Enhanced Methanol Synthesis over Self-Limited ZnOx Overlayers on Cu Nanoparticles Formed via Gas-Phase Migration Route
Tongyuan Song
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Rongtan Li
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorDr. Jianyang Wang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorDr. Cui Dong
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorXiaohui Feng
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Yanxiao Ning
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorProf. Rentao Mu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Qiang Fu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorTongyuan Song
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Rongtan Li
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorDr. Jianyang Wang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorDr. Cui Dong
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorXiaohui Feng
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Yanxiao Ning
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorProf. Rentao Mu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Qiang Fu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, iChEM, Chinese Academy of Sciences, Dalian, 116023 China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorAbstract
Supported metal catalysts are widely used for chemical conversion, in which construction of high density metal-oxide or oxide-metal interface is an important means to improve their reaction performance. Here, Cu@ZnOx encapsulation structure has been in situ constructed through gas-phase migration of Zn species from ZnO particles onto surface of Cu nanoparticles under CO2 hydrogenation atmosphere at 450 °C. The gas-phase deposition of Zn species onto the Cu surface and growth of ZnOx overlayer is self-limited under the high temperature and redox gas (CO2/H2) conditions. Accordingly, high density ZnOx-Cu interface sites can be effectively tailored to have an enhanced activity in CO2 hydrogenation to methanol. This work reveals a new route for the construction of active oxide-metal interface and classic strong metal-support interaction state through gas-phase migration of support species induced by high temperature redox reaction atmosphere.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316888-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans, M. Pérez, Science 2007, 318, 1757–1760;
- 1bQ. Fu, W.-X. Li, Y. Yao, H. Liu, H.-Y. Su, D. Ma, X.-K. Gu, L. Chen, Z. Wang, H. Zhang, B. Wang, X. Bao, Science 2010, 328, 1141–1144;
- 1cI. X. Green, W. Tang, M. Neurock, J. T. Yates, Science 2011, 333, 736–739;
- 1dM. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science 2013, 341, 771–773;
- 1eS. D. Senanayake, J. A. Rodriguez, J. F. Weaver, Acc. Chem. Res. 2020, 53, 1488–1497.
- 2
- 2aS. Tauster, S. Fung, R. L. Garten, J. Am. Chem. Soc. 1978, 100, 170–175;
- 2bQ. Fu, T. Wagner, S. Olliges, H.-D. Carstanjen, J. Phys. Chem. B 2005, 109, 944–951;
- 2cX. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S. D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, T.-S. Lin, J. Am. Chem. Soc. 2012, 134, 10251–10258;
- 2dM. G. Willinger, W. Zhang, O. Bondarchuk, S. Shaikhutdinov, H.-J. Freund, R. Schlögl, Angew. Chem. Int. Ed. 2014, 53, 5998–6001;
- 2eJ. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 2017, 9, 120–127;
- 2fJ. Dong, Q. Fu, H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai, H. Zhang, Z. Liu, X. Bao, J. Am. Chem. Soc. 2020, 142, 17167–17174;
- 2gH. Frey, A. Beck, X. Huang, J. A. van Bokhoven, M. G. Willinger, Science 2022, 376, 982–987;
- 2hH. Xin, L. Lin, R. Li, D. Li, T. Song, R. Mu, Q. Fu, X. Bao, J. Am. Chem. Soc. 2022, 144, 4874–4882.
- 3
- 3aK. L. Choy, Prog. Mater. Sci. 2003, 48, 57–170;
- 3bM. Seipenbusch, A. Binder, J. Phys. Chem. C 2009, 113, 20606–20610;
- 3cS. Saedy, M. A. Newton, M. Zabilskiy, J. H. Lee, F. Krumeich, M. Ranocchiari, J. A. van Bokhoven, Catal. Sci. Technol. 2022, 12, 2703–2716.
- 4
- 4aB. J. O'Neill, D. H. K. Jackson, J. Lee, C. Canlas, P. C. Stair, C. L. Marshall, J. W. Elam, T. F. Kuech, J. A. Dumesic, G. W. Huber, ACS Catal. 2015, 5, 1804–1825;
- 4bC. Wang, H. Wang, Q. Yao, H. Yan, J. Li, J. Lu, J. Phys. Chem. C 2016, 120, 478–486;
- 4cL. Cao, W. Liu, Q. Luo, R. Yin, B. Wang, J. Weissenrieder, M. Soldemo, H. Yan, Y. Lin, Z. Sun, C. Ma, W. Zhang, S. Chen, H. Wang, Q. Guan, T. Yao, S. Wei, J. Yang, J. Lu, Nature 2019, 565, 631–635;
- 4dW. W. McNeary, S. A. Tacey, G. D. Lahti, D. R. Conklin, K. A. Unocic, E. C. D. Tan, E. C. Wegener, T. E. Erden, S. Moulton, C. Gump, J. Burger, M. B. Griffin, C. A. Farberow, M. J. Watson, L. Tuxworth, K. M. Van Allsburg, A. A. Dameron, K. Buechler, D. R. Vardon, ACS Catal. 2021, 11, 8538–8549.
- 5
- 5aC. Copéret, A. Comas-Vives, M. P. Conley, D. P. Estes, A. Fedorov, V. Mougel, H. Nagae, F. Núñez-Zarur, P. A. Zhizhko, Chem. Rev. 2016, 116, 323–421;
- 5bE. Lam, K. Larmier, P. Wolf, S. Tada, O. V. Safonova, C. Copéret, J. Am. Chem. Soc. 2018, 140, 10530–10535;
- 5cH. Zhou, S. R. Docherty, N. Phongprueksathat, Z. Chen, A. V. Bukhtiyarov, I. P. Prosvirin, O. V. Safonova, A. Urakawa, C. Copéret, C. R. Müller, A. Fedorov, JACS Au 2023, 3, 2536–2549.
- 6
- 6aM. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, Science 2012, 336, 893–897;
- 6bS. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Science 2016, 352, 969–974;
- 6cS. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez, P. Liu, Science 2017, 355, 1296–1299;
- 6dA. Beck, M. Zabilskiy, M. A. Newton, O. Safonova, M. G. Willinger, J. A. van Bokhoven, Nat. Catal. 2021, 4, 488–497;
- 6eP. Amann, B. Klötzer, D. Degerman, N. Köpfle, T. Götsch, P. Lömker, C. Rameshan, K. Ploner, D. Bikaljevic, H.-Y. Wang, Science 2022, 376, 603–608;
- 6fD. Li, F. Xu, X. Tang, S. Dai, T. Pu, X. Liu, P. Tian, F. Xuan, Z. Xu, I. E. Wachs, M. Zhu, Nat. Catal. 2022, 5, 99–108.
- 7
- 7aT. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M. G. Willinger, Angew. Chem. Int. Ed. 2015, 54, 4544–4548;
- 7bS. Jin, Z. Zhang, D. Li, Y. Wang, C. Lian, M. Zhu, Angew. Chem. Int. Ed. 2023, 62, e202301563.
- 8X. Liu, J. Luo, H. Wang, L. Huang, S. Wang, S. Li, Z. Sun, F. Sun, Z. Jiang, S. Wei, Angew. Chem. Int. Ed. 2022, 61, e202202330.
- 9W. Tu, P. Ren, Y. Li, Y. Yang, Y. Tian, Z. Zhang, M. Zhu, Y.-H. C. Chin, J. Gong, Y.-F. Han, J. Am. Chem. Soc. 2023, 145, 8751–8756.
- 10
- 10aY. Kanai, T. Watanabe, T. Fujitani, M. Saito, J. Nakamura, T. Uchijima, Catal. Lett. 1994, 27, 67–78;
- 10bT. Fujitani, T. Matsuda, Y. Kushida, S. Ogihara, T. Uchijima, J. Nakamura, Catal. Lett. 1997, 49, 175–179.
- 11J. C. Greenbank, B. B. Argent, Trans. Faraday Soc. 1965, 61, 655–664.
- 12Y. Ning, M. Wei, L. Yu, F. Yang, R. Chang, Z. Liu, Q. Fu, X. Bao, J. Phys. Chem. C 2015, 119, 27556–27561.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.