Stereoselective Copper-Catalyzed Olefination of Imines
James E. Baumann
Department of Chemistry, University of Washington, 109 Bagley Hall, 98195 Seattle, WA, USA
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCrystal P. Chung
Department of Chemistry, University of Washington, 109 Bagley Hall, 98195 Seattle, WA, USA
Contribution: Formal analysis (supporting), Investigation (equal), Methodology (equal)
Search for more papers by this authorCorresponding Author
Prof. Gojko Lalic
Department of Chemistry, University of Washington, 109 Bagley Hall, 98195 Seattle, WA, USA
Contribution: Funding acquisition (lead), Project administration (lead), Writing - review & editing (supporting)
Search for more papers by this authorJames E. Baumann
Department of Chemistry, University of Washington, 109 Bagley Hall, 98195 Seattle, WA, USA
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCrystal P. Chung
Department of Chemistry, University of Washington, 109 Bagley Hall, 98195 Seattle, WA, USA
Contribution: Formal analysis (supporting), Investigation (equal), Methodology (equal)
Search for more papers by this authorCorresponding Author
Prof. Gojko Lalic
Department of Chemistry, University of Washington, 109 Bagley Hall, 98195 Seattle, WA, USA
Contribution: Funding acquisition (lead), Project administration (lead), Writing - review & editing (supporting)
Search for more papers by this authorAbstract
Alkenes are an important class of organic molecules found among synthetic intermediates and bioactive compounds. They are commonly synthesized through stoichiometric Wittig-type olefination of carbonyls and imines, using ylides or their equivalents. Despite the importance of Wittig-type olefination reactions, their catalytic variants remain underdeveloped. We explored the use of transition metal catalysis to form ylide equivalents from readily available starting materials. Our investigation led to a new copper-catalyzed olefination of imines with alkenyl boronate esters as coupling partners. We identified a heterobimetallic complex, obtained by hydrocupration of the alkenyl boronate esters, as the key catalytic intermediate that serves as an ylide equivalent. The high E-selectivity observed in the reaction is due to the stereoselective addition of this intermediate to an imine, followed by stereospecific anti-elimination.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316521-sup-0001-misc_information.pdf10.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. D. Bergelson, M. M. Shemyakin, Pure Appl. Chem. 1964, 9, 271–284;
- 1bM. Schlosser, Topics in Stereochemistry, Wiley, New York, 1970, pp. 1–30;
- 1cD.-J. Dong, H.-H. Li, S.-K. Tian, J. Am. Chem. Soc. 2010, 132, 5018–5020;
- 1dP. A. Byrne, D. G. Gilheany, Chem. Soc. Rev. 2013, 42, 6670–6696;
- 1eM. Das, A. Manvar, M. Jacolot, M. Blangetti, R. C. Jones, D. F. O'Shea, Chem. Eur. J. 2015, 21, 8737–8740;
- 1fM. M. Heravi, V. Zadsirjan, H. Hamidi, M. Daraie, T. Momeni in The Alkaloids: Chemistry and Biology, Vol. 84 (Eds.: H.-J. Knölker, H.-J. Knölker), Elsevier, Amsterdam, 2020, pp. 201–334;
10.1016/bs.alkal.2020.02.002 Google Scholar
- 1gJ. Merad, P. S. Grant, T. Stopka, J. Sabbatani, R. Meyrelles, A. Preinfalk, J. Matyasovsky, B. Maryasin, L. González, N. Maulide, J. Am. Chem. Soc. 2022, 144, 0.
- 2
- 2aM. Schuster, S. Blechert, Angew. Chem. Int. Ed. 1997, 36, 2036–2056;
- 2bA. Fürstner, Angew. Chem. Int. Ed. 2000, 39, 3012–3043;
10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 2cA. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243–251;
- 2dO. M. Ogba, N. C. Warner, D. J. O'Leary, R. H. Grubbs, Chem. Soc. Rev. 2018, 47, 4510–4544;
- 2eS. J. Meek, R. V. O'Brien, J. Llaveria, R. R. Schrock, A. H. Hoveyda, Nature 2011, 471, 461–466;
- 2fB. K. Keitz, K. Endo, P. R. Patel, M. B. Herbert, R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 693–699;
- 2gA. M. Johns, T. S. Ahmed, B. W. Jackson, R. H. Grubbs, R. L. Pederson, Org. Lett. 2016, 18, 772–775;
- 2hT. T. Nguyen, M. J. Koh, X. Shen, F. Romiti, R. R. Schrock, A. H. Hoveyda, Science 2016, 352, 569–575;
- 2iT. T. Nguyen, M. J. Koh, T. J. Mann, R. R. Schrock, A. H. Hoveyda, Nature 2017, 552, 347–354;
- 2jY. Xu, J. J. Wong, A. E. Samkian, J. H. Ko, S. Chen, K. N. Houk, R. H. Grubbs, J. Am. Chem. Soc. 2020, 142, 20987–20993.
- 3
- 3aA. Ramani, B. Desai, M. Patel, T. Naveen, Asian J. Org. Chem. 2022, 11, e202200047;
- 3bC. W. Cheung, F. E. Zhurkin, X. Hu, J. Am. Chem. Soc. 2015, 137, 4932–4935;
- 3cK. Nakamura, T. Nishikata, ACS Catal. 2017, 7, 1049–1052;
- 3dN. A. Till, R. T. Smith, D. W. C. MacMillan, J. Am. Chem. Soc. 2018, 140, 5701–5705;
- 3eM. T. Lee, M. B. Goodstein, G. Lalic, J. Am. Chem. Soc. 2019, 141, 17086–17091;
- 3fL. Yu, L. Lv, Z. Qiu, Z. Chen, Z. Tan, Y.-F. Liang, C.-J. Li, Angew. Chem. Int. Ed. 2020, 59, 14009–14013;
- 3gH. Yue, C. Zhu, R. Kancherla, F. Liu, M. Rueping, Angew. Chem. Int. Ed. 2020, 59, 5738–5746;
- 3hA. Hazra, J. A. Kephart, A. Velian, G. Lalic, J. Am. Chem. Soc. 2021, 143, 7903–7908;
- 3iY. Li, D. Liu, L. Wan, J.-Y. Zhang, X. Lu, Y. Fu, J. Am. Chem. Soc. 2022, 144, 13961–13972.
- 4
- 4aB. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863–927;
- 4bG. Wittig, U. Schöllkopf, Chem. Ber. 1954, 87, 1318–1330;
- 4cG. Wittig, W. Haag, Chem. Ber. 1955, 88, 1654–1666;
- 4dD.-J. Dong, Y. Li, J.-Q. Wang, S.-K. Tian, Chem. Commun. 2011, 47, 2158–2160.
- 5
- 5aK. Kobayashi, K. Tanaka, H. Kogen, Tetrahedron Lett. 2018, 59, 568–582;
- 5bD. Roman, M. Sauer, C. Beemelmanns, Synthesis 2021, 53, 2713–2739.
- 6
- 6aD. J. Peterson, J. Org. Chem. 1968, 33, 780–784;
- 6bv. L. F. Staden, D. Gravestock, D. J. Ager, Chem. Soc. Rev. 2002, 31, 195–200;
- 6cD. J. Ager, Organic Reactions, Wiley, New York, 2004, pp. 1–223;
- 6dM. Das, D. F. O'Shea, Org. Lett. 2016, 18, 336–339.
- 7
- 7aM. Julia, J.-M. Paris, Tetrahedron Lett. 1973, 14, 4833–4836;
- 7bP. J. Kocienski, B. Lythgoe, S. Ruston, J. Chem. Soc. Perkin Trans. 1 1978, 829–834;
- 7cP. X. T. Rinu, S. Radhika, G. Anilkumar, ChemistrySelect 2022, 7, e202200760.
- 8
- 8aL. Shi, W. Wang, Y. Wang, Y. Huang, J. Org. Chem. 1989, 54, 2027–2028;
- 8bZ.-Z. Huang, Y. Tang, J. Org. Chem. 2002, 67, 5320–5326;
- 8cJ. M. Smith, M. F. Greaney, Tetrahedron Lett. 2007, 48, 8687–8690;
- 8dC. J. O'Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R. Kunkel, K. C. Przeworski, G. A. Chass, Angew. Chem. Int. Ed. 2009, 48, 6836–6839;
- 8eC. J. O'Brien, Z. S. Nixon, A. J. Holohan, S. R. Kunkel, J. L. Tellez, B. J. Doonan, E. E. Coyle, F. Lavigne, L. J. Kang, K. C. Przeworski, Chem. Eur. J. 2013, 19, 15281–15289;
- 8fC. J. O'Brien, F. Lavigne, E. E. Coyle, A. J. Holohan, B. J. Doonan, Chem. Eur. J. 2013, 19, 5854–5858;
- 8gE. E. Coyle, B. J. Doonan, A. J. Holohan, K. A. Walsh, F. Lavigne, E. H. Krenske, C. J. O'Brien, Angew. Chem. Int. Ed. 2014, 53, 12907–12911;
- 8hM.-L. Schirmer, S. Adomeit, T. Werner, Org. Lett. 2015, 17, 3078–3081;
- 8iZ. Lao, P. H. Toy, Beilstein J. Org. Chem. 2016, 12, 2577–2587.
- 9
- 9aT. A. Hamlin, G. M. L. Lazarus, C. B. Kelly, N. E. Leadbeater, Org. Process Res. Dev. 2014, 18, 1253–1258;
- 9bT. A. Hamlin, C. B. Kelly, R. M. Cywar, N. E. Leadbeater, J. Org. Chem. 2014, 79, 1145–1155;
- 9cA. Manvar, D. F. O'Shea, Eur. J. Org. Chem. 2015, 7259–7263;
- 9dY. Wang, G.-F. Du, C.-Z. Gu, F. Xing, B. Dai, L. He, Tetrahedron 2016, 72, 472–478;
- 9eA. K. Simlandy, S. Mukherjee, J. Org. Chem. 2017, 82, 4851–4858.
- 10
- 10aF. E. Kuhn, A. M. Santos, Mini-Rev. Org. Chem. 2004, 1, 55–64;
- 10bV. G. Nenajdenko, V. N. Korotchenko, A. V. Shastin, E. S. Balenkova, Russ. Chem. Bull. 2004, 53, 1034–1064.
- 11
- 11aX. Lu, H. Fang, Z. Ni, J. Organomet. Chem. 1989, 373, 77–84;
- 11bW. A. Herrmann, M. Wang, Angew. Chem. Int. Ed. 1991, 30, 1641–1643;
- 11cO. Fujimura, T. Honma, Tetrahedron Lett. 1998, 39, 625–626;
- 11dG. Cheng, G. A. Mirafzal, L. K. Woo, Organometallics 2003, 22, 1468–1474;
- 11eY. Chen, L. Huang, M. A. Ranade, X. P. Zhang, J. Org. Chem. 2003, 68, 3714–3717;
- 11fA. M. Santos, F. M. Pedro, A. A. Yogalekar, I. S. Lucas, C. C. Romão, F. E. Kühn, Chem. Eur. J. 2004, 10, 6313–6321;
- 11gF. E. Kühn, A. M. Santos, A. A. Jogalekar, F. M. Pedro, P. Rigo, W. Baratta, J. Catal. 2004, 227, 253–256;
- 11hF. M. Pedro, A. M. Santos, W. Baratta, F. E. Kühn, Organometallics 2007, 26, 302–309;
- 11iH.-B. Zou, H. Yang, Z.-Y. Liu, M. H. R. Mahmood, G.-Q. Mei, H.-Y. Liu, C.-K. Chang, Organometallics 2015, 34, 2791–2795;
- 11jÖ. Karaca, M. R. Anneser, J. W. Kück, A. C. Lindhorst, M. Cokoja, F. E. Kühn, J. Catal. 2016, 344, 213–220;
- 11kY. Lu, C. Huang, C. Liu, Y. Guo, Q.-Y. Chen, Eur. J. Org. Chem. 2018, 2082–2090.
- 12
- 12aY. Shen, Y. Zhou, Tetrahedron Lett. 1991, 32, 513–514;
- 12bY. Shen, Y. Zhou, J. Fluorine Chem. 1993, 61, 247–251;
- 12cS. Rommel, C. Belger, J.-M. Begouin, B. Plietker, ChemCatChem 2015, 7, 1292–1301.
- 13During the preparation of the manuscript a more general application of this approach has been reported for the synthesis of Z-alkene together with a related alternative approach to E-alkenes: L. Zhang, D. A. Nagib, Nat. Chem. 2023, https://doi.org/10.1038/s41557-023-01333-8.
- 14
- 14aD. S. Laitar, E. Y. Tsui, J. P. Sadighi, Organometallics 2006, 25, 2405–2408;
- 14bD. Nishikawa, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 15620–15623;
- 14cW. J. Jang, J. Yun, Angew. Chem. Int. Ed. 2018, 57, 12116–12120;
- 14dM. K. Armstrong, G. Lalic, J. Am. Chem. Soc. 2019, 141, 6173–6179;
- 14eD.-W. Gao, Y. Gao, H. Shao, T.-Z. Qiao, X. Wang, B. B. Sanchez, J. S. Chen, P. Liu, K. M. Engle, Nat. Catal. 2020, 3, 23–29;
- 14fW. J. Jang, J. Woo, J. Yun, Angew. Chem. Int. Ed. 2021, 60, 4614–4618;
- 14gJ. E. Baumann, G. Lalic, Angew. Chem. Int. Ed. 2022, 61, e202206462;
- 14hS. Jin, J. Li, K. Liu, W.-Y. Ding, S. Wang, X. Huang, X. Li, P. Yu, Q. Song, Nat. Commun. 2022, 13, 3524.
- 15
- 15aM. V. Joannou, B. S. Moyer, S. J. Meek, J. Am. Chem. Soc. 2015, 137, 6176–6179;
- 15bS. A. Murray, J. C. Green, S. B. Tailor, S. J. Meek, Angew. Chem. Int. Ed. 2016, 55, 9065–9069;
- 15cJ. Kim, K. Ko, S. H. Cho, Angew. Chem. Int. Ed. 2017, 56, 11584–11588;
- 15dJ. C. Green, M. V. Joannou, S. A. Murray, J. M. Zanghi, S. J. Meek, ACS Catal. 2017, 7, 4441–4445.
- 16
- 16aA. Pelter, D. Buss, E. Colclough, B. Singaram, Tetrahedron 1993, 49, 7077–7103;
- 16bK. Bojaryn, C. Hirschhäuser, Chem. Eur. J. 2022, 28, e202104125.
- 17
- 17aE. Ascic, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 4666–4669;
- 17bY. Yang, I. B. Perry, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 9787–9790.
- 18F. G. Bordwell, H. E. Fried, J. Org. Chem. 1991, 56, 4218–4223.
- 19S. Bera, R. Mao, X. Hu, Nat. Chem. 2021, 13, 270–277.
- 20
- 20aJ. T. Edwards, R. R. Merchant, K. S. McClymont, K. W. Knouse, T. Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao, F.-L. Wei, T. Zhou, M. D. Eastgate, P. S. Baran, Nature 2017, 545, 213–218;
- 20bD. Kurandina, M. Rivas, M. Radzhabov, V. Gevorgyan, Org. Lett. 2018, 20, 357–360;
- 20cY. Ye, H. Chen, K. Yao, H. Gong, Org. Lett. 2020, 22, 2070–2075.
- 21
- 21aT. J. Mazzacano, N. J. Leon, G. W. Waldhart, N. P. Mankad, Dalton Trans. 2017, 46, 5518–5521;
- 21bJ. Lee, S. Radomkit, S. Torker, J. del Pozo, A. H. Hoveyda, Nat. Chem. 2018, 10, 99–108.
- 22
- 22aC. Deutsch, N. Krause, Chem. Rev. 2008, 108, 2916–2927;
- 22bN. Yoshikai, E. Nakamura, Chem. Rev. 2012, 112, 2339–2372;
- 22cS. Feng, S. L. Buchwald, J. Am. Chem. Soc. 2021, 143, 4935–4941.
- 23
- 23aN. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics 2004, 23, 3369–3371;
- 23bD.-w. Lee, J. Yun, Tetrahedron Lett. 2005, 46, 2037–2039.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.