Superfast Formation of C(sp2)−N, C(sp2)−P, and C(sp2)−S Vinylic Bonds in Water Microdroplets
Yifan Meng
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorCorresponding Author
Richard N. Zare
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorCorresponding Author
Elumalai Gnanamani
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Search for more papers by this authorYifan Meng
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorCorresponding Author
Richard N. Zare
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorCorresponding Author
Elumalai Gnanamani
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667 India
Search for more papers by this authorAbstract
We report examples of C(sp2)−N, C(sp2)−S, and C(sp2)−P bond-forming transformations in water microdroplets at room temperature and atmospheric pressure using N2 as a nebulizing gas. When an aqueous solution of vinylic acid and amine is electrosprayed (+3 kV), the corresponding C(sp2)−N product is formed in a single step, which was characterized using mass spectrometry (MS) and tandem mass spectrometry (MS2). The scope of this reaction was extended to other amines and other unsaturated acids, including acrylic (CH2=CHCOOH) and crotonic (CH3CH=CHCOOH) acids. We also found that thiols and phosphines are viable nucleophiles, and the corresponding C(sp2)−S and C(sp2)−P products are observed in positive ion mode using MS and MS2.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316131-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318–5365.
- 2A. Correa, C. Bolm in Amination and Formation of sp2C−N Bonds (Eds.: M. Taillefer, D. Ma), Springer Berlin Heidelberg, Berlin 2013, pp. 55–85.
- 3C. J. Henrich, R. W. Robey, K. Takada, H. R. Bokesch, S. E. Bates, S. Shukla, S. V. Ambudkar, J. B. McMahon, K. R. Gustafson, ACS Chem. Biol. 2009, 4, 637–647.
- 4H. Umihara, T. Yoshino, J. Shimokawa, M. Kitamura, T. Fukuyama, Angew. Chem. Int. Ed. 2016, 55, 6915–6918.
- 5W. Xu, X. Cai, M. E. Jung, Y. Tang, J. Am. Chem. Soc. 2010, 132, 13604–13607.
- 6L. Rout, T. Punniyamurthy, Coord. Chem. Rev. 2021, 431, 213675.
- 7T. G. Ostapowicz, C. Merkens, M. Hölscher, J. Klankermayer, W. Leitner, J. Am. Chem. Soc. 2013, 135, 2104–2107.
- 8A. J. M. Miller, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2008, 130, 11874–11875.
- 9M. Itazaki, S. Katsube, M. Kamitani, H. Nakazawa, Chem. Commun. 2016, 52, 3163–3166.
- 10M. A. Bennett, J. Castro, A. J. Edwards, M. R. Kopp, E. Wenger, A. C. Willis, Organometallics 2001, 20, 980–989.
- 11S. Y. Woo, J. H. Kim, M. K. Moon, S.-H. Han, S. K. Yeon, J. W. Choi, B. K. Jang, H. J. Song, Y. G. Kang, J. W. Kim, J. Lee, D. J. Kim, O. Hwang, K. D. Park, J. Med. Chem. 2014, 57, 1473–1487.
- 12M. Arndt, K. S. M. Salih, A. Fromm, L. J. Goossen, F. Menges, G. Niedner-Schatteburg, J. Am. Chem. Soc. 2011, 133, 7428–7449.
- 13Y. Bolshan, R. A. Batey, Angew. Chem. Int. Ed. 2008, 47, 2109–2112.
- 14L. Jiang, G. E. Job, A. Klapars, S. L. Buchwald, Org. Lett. 2003, 5, 3667–3669.
- 15A. Klapars, K. R. Campos, C.-y. Chen, R. P. Volante, Org. Lett. 2005, 7, 1185–1188.
- 16L. N. Berntsen, T. N. Solvi, K. Sørnes, D. S. Wragg, A. H. Sandtorv, Chem. Commun. 2021, 57, 11851–11854.
- 17Y. Morimoto, T. Kochi, F. Kakiuchi, J. Org. Chem. 2021, 86, 13143–13152.
- 18M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217–7218.
- 19Z. Lian, B. N. Bhawal, P. Yu, B. Morandi, Science 2017, 356, 1059–1063.
- 20T. Delcaillau, A. Bismuto, Z. Lian, B. Morandi, Angew. Chem. Int. Ed. 2020, 59, 2110–2114.
- 21H. F. Piedra, M. Plaza, Chem. Sci. 2023, 14, 650–657.
- 22X.-T. Liu, X.-Y. Han, Y. Wu, Y.-Y. Sun, L. Gao, Z. Huang, Q.-W. Zhang, J. Am. Chem. Soc. 2021, 143, 11309–11316.
- 23V. A. Pollard, A. Young, R. McLellan, A. R. Kennedy, T. Tuttle, R. E. Mulvey, Angew. Chem. Int. Ed. 2019, 58, 12291–12296.
- 24Y. Li, L. Liu, D. Shan, F. Liang, S. Wang, L. Yu, J.-Q. Liu, Q. Wang, X. Shao, D. Zhu, ACS Catal. 2023, 13, 13474–13483.
- 25L. Ling, C. Hu, L. Long, X. Zhang, L. Zhao, L. L. Liu, H. Chen, M. Luo, X. Zeng, Nat. Commun. 2023, 14, 990.
- 26Y. Meng, E. Gnanamani, R. N. Zare, J. Am. Chem. Soc. 2023, 145, 7724–7728.
- 27Y. Meng, E. Gnanamani, R. N. Zare, J. Am. Chem. Soc. 2023, 145, 32–36.
- 28S. Banerjee, E. Gnanamani, X. Yan, R. N. Zare, Analyst 2017, 142, 1399–1402.
- 29X. Song, Y. Meng, R. N. Zare, J. Am. Chem. Soc. 2022, 144, 16744–16748.
- 30H. Nie, Z. Wei, L. Qiu, X. Chen, D. T. Holden, R. G. Cooks, Chem. Sci. 2020, 11, 2356–2361.
- 31L. Qiu, R. G. Cooks, Angew. Chem. Int. Ed. 2022, 61, e202210765.
- 32D. Zhang, X. Yuan, C. Gong, X. Zhang, J. Am. Chem. Soc. 2022, 144, 16184–16190.
- 33C. Gong, D. Li, X. Li, D. Zhang, D. Xing, L. Zhao, X. Yuan, X. Zhang, J. Am. Chem. Soc. 2022, 144, 3510–3516.
- 34S. Jin, H. Chen, X. Yuan, D. Xing, R. Wang, L. Zhao, D. Zhang, C. Gong, C. Zhu, X. Gao, Y. Chen, X. Zhang, JACS Au 2023, 3, 1563–1571.
- 35X. Yuan, D. Zhang, C. Liang, X. Zhang, J. Am. Chem. Soc. 2023, 145, 2800–2805.
- 36A. Nandy, A. Kumar, S. Mondal, D. Koner, S. Banerjee, J. Am. Chem. Soc. 2023, 145, 15674–15679.
- 37P. Basuri, L. E. Gonzalez, N. M. Morato, T. Pradeep, R. G. Cooks, Chem. Sci. 2020, 11, 12686–12694.
- 38Y. Liu, Q. Ge, T. Wang, R. Zhang, K. Li, K. Gong, L. Xie, W. Wang, L. Wang, W. You, X. Ruan, Z. Shi, J. Han, R. Wang, H. Fu, J. Chen, C. K. Chan, L. Zhang, Chem 2023, https://doi.org/10.1016/j.chempr.2023.09.019.
- 39Q. Ge, Y. Liu, K. Li, L. Xie, X. Ruan, W. Wang, L. Wang, T. Wang, W. You, L. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202304189.
- 40A. J. Colussi, J. Am. Chem. Soc. 2023, 145, 16315–16317.
- 41M. A. Mehrgardi, M. Mofidfar, R. N. Zare, J. Am. Chem. Soc. 2022, 144, 7606–7609.
- 42Y. B. Vogel, C. W. Evans, M. Belotti, L. Xu, I. C. Russell, L.-J. Yu, A. K. K. Fung, N. S. Hill, N. Darwish, V. R. Gonçales, M. L. Coote, K. Swaminathan Iyer, S. Ciampi, Nat. Commun. 2020, 11, 6323.
- 43Y. Meng, R. N. Zare, E. Gnanamani, J. Am. Chem. Soc. 2023, 145, 19202–19206.
- 44Y. Meng, E. Gnanamani, R. N. Zare, J. Am. Chem. Soc. 2022, 144, 19709–19713.
- 45J. K. Lee, S. Kim, H. G. Nam, R. N. Zare, Proc. Natl. Acad. Sci. USA 2015, 112, 3898–3903.
- 46A. A. Mikhailine, M. I. Maishan, A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 2012, 134, 12266–12280.
- 47C. E. Anderson, D. C. Apperley, A. S. Batsanov, P. W. Dyer, J. A. K. Howard, Dalton Trans. 2006, 4134–4145.
- 48G. Hirata, H. Satomura, H. Kumagae, A. Shimizu, G. Onodera, M. Kimura, Org. Lett. 2017, 19, 6148–6151.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.