Room-Temperature Salt Template Synthesis of Nitrogen-Doped 3D Porous Carbon for Fast Metal-Ion Storage
Bochao Chen
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorZijia Qi
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Biao Chen
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Search for more papers by this authorXin Liu
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080 P. R. China
Search for more papers by this authorHuan Li
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005 Australia
Search for more papers by this authorXiaopeng Han
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Search for more papers by this authorGuangmin Zhou
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorWenbin Hu
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207 P. R. China
Search for more papers by this authorNaiqin Zhao
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Chunnian He
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207 P. R. China
Search for more papers by this authorBochao Chen
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorZijia Qi
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Biao Chen
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Search for more papers by this authorXin Liu
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080 P. R. China
Search for more papers by this authorHuan Li
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005 Australia
Search for more papers by this authorXiaopeng Han
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Search for more papers by this authorGuangmin Zhou
Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorWenbin Hu
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207 P. R. China
Search for more papers by this authorNaiqin Zhao
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Search for more papers by this authorCorresponding Author
Chunnian He
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350 P. R. China
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350 P. R. China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207 P. R. China
Search for more papers by this authorAbstract
The water-soluble salt-template technique holds great promise for fabricating 3D porous materials. However, an equipment-free and pore-size controllable synthetic approach employing salt-template precursors at room temperature has remained unexplored. Herein, we introduce a green room-temperature antisolvent precipitation strategy for creating salt-template self-assembly precursors to universally produce 3D porous materials with controllable pore size. Through a combination of theoretical simulations and advanced characterization techniques, we unveil the antisolvent precipitation mechanism and provide guidelines for selecting raw materials and controlling the size of precipitated salt. Following the calcination and washing steps, we achieve large-scale and universal production of 3D porous materials and the recycling of the salt templates and antisolvents. The optimized nitrogen-doped 3D porous carbon (N-3DPC) materials demonstrate distinctive structural benefits, facilitating a high capacity for potassium-ion storage along with exceptional reversibility. This is further supported by in situ electrochemical impedance spectra, in situ Raman spectroscopy, and theoretical calculations. The anode shows a high rate capacity of 181 mAh g−1 at 4 A g−1 in the full cell. This study addresses the knowledge gap concerning the room-temperature synthesis of salt-template self-assembly precursors for the large-scale production of porous materials, thereby expanding their potential applications for electrochemical energy conversion and storage.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316116-sup-0001-misc_information.pdf4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Rudola, R. Sayers, C. J. Wright, J. Barker, Nat. Energy 2023, 8, 215–218;
- 1bB. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S. Z. Qiao, Energy Environ. Sci. 2020, 13, 1096–1131;
- 1cB. Chen, S. Sui, F. He, C. He, H. M. Cheng, S. Z. Qiao, W. Hu, N. Zhao, Chem. Soc. Rev. 2023, 52, 7802–7847;
- 1dS. Li, C. Huang, L. Gao, Q. Shen, P. Li, X. Qu, L. Jiao, Y. Liu, Angew. Chem. Int. Ed. 2022, 61, e202211478.
- 2
- 2aW. J. Liu, H. Jiang, H. Q. Yu, Energy Environ. Sci. 2019, 12, 1751–1779;
- 2bN. Sun, J. Qiu, B. Xu, Adv. Energy Mater. 2022, 12, 2200715–2200753;
- 2cJ. Kim, M. S. Choi, K. H. Shin, M. Kota, Y. Kang, S. Lee, J. Y. Lee, H. S. Park, Adv. Mater. 2019, 31, 1803444–1803463.
- 3
- 3aE. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 2019, 366, 969–980;
- 3bW. Zhang, R. Huang, X. Yan, C. Tian, Y. Xiao, Z. Lin, L. Dai, Z. Guo, L. Chai, Angew. Chem. Int. Ed. 2023, 62, e202308891;
- 3cT. Zhang, F. Ran, Adv. Funct. Mater. 2021, 31, 2010041–2010069;
- 3dD. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2009, 121, 1553–1556;
- 3eB. Chen, X. Zhong, G. Zhou, N. Zhao, H. M. Cheng, Adv. Mater. 2022, 34, 2105812–2105840.
- 4
- 4aT. Liu, L. Zhang, B. Cheng, J. Yu, Adv. Energy Mater. 2019, 9, 1803900–1803954;
- 4bY. Fang, D. Luan, S. Gao, X. W. Lou, Angew. Chem. Int. Ed. 2021, 60, 20102–20118.
- 5W. Tian, H. Zhang, X. Duan, H. Sun, G. Shao, S. Wang, Adv. Funct. Mater. 2020, 30, 1909265–1909305.
- 6
- 6aA. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, M. Yousaf, S. Gao, R. Zou, Y. Zhao, Adv. Mater. 2019, 31, 1805430–1805439;
- 6bF. Xie, L. Zhang, C. Ye, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2019, 31, 1800492–1800499;
- 6cB. Chen, J. Ding, X. Bai, H. Zhang, M. Liang, S. Zhu, C. Shi, L. Ma, E. Liu, N. Zhao, F. He, W. Zhou, C. He, Adv. Funct. Mater. 2022, 32, 2109899–2109909.
- 7C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi, J. Li, Z. Liu, S. Dou, J. Sun, Adv. Energy Mater. 2020, 10, 2001161–2001170.
- 8S. Zhu, N. Zhao, J. Li, X. Deng, J. Sha, C. He, Nano Today 2019, 29, 100796–100816.
- 9
- 9aP. Xiong, J. Wu, M. Zhou, Y. Xu, ACS Nano 2020, 14, 1018–1026;
- 9bY. Cui, W. Feng, D. Wang, Y. Wang, W. Liu, H. Wang, Y. Jin, Y. Yan, H. Hu, M. Wu, Q. Xue, Z. Yan, W. Xing, Adv. Energy Mater. 2021, 11, 2101343–2101354;
- 9cC. Luo, W. Lv, Y. Deng, G. Zhou, Z. Z. Pan, S. Niu, B. Li, F. Kang, Q. H. Yang, Small 2017, 13, 1700358–1700364;
- 9dT. Wu, M. Jing, L. Yang, G. Zou, H. Hou, Y. Zhang, Y. Zhang, X. Cao, X. Ji, Adv. Energy Mater. 2019, 9, 1803478–1803488.
- 10
- 10aZ. L. Wang, J. Phys. Chem. B 2000, 104, 1153–1175;
- 10bJ. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366–7375.
- 11R. A. Vicente, I. T. Neckel, S. K. R. S. Sankaranarayanan, J. Solla-Gullon, P. S. Fernández, ACS Nano 2021, 15, 6129–6146.
- 12Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 2018, 9, 1720–1730.
- 13H. Deng, L. Wang, S. Li, M. Zhang, T. Wang, J. Zhou, M. Chen, S. Chen, J. Cao, Q. Zhang, J. Zhu, B. Lu, Adv. Funct. Mater. 2021, 31, 2107246–2107256.
- 14
- 14aW. Zhang, J. Yin, M. Sun, W. Wang, C. Chen, M. Altunkaya, A. H. Emwas, Y. Han, U. Schwingenschlögl, H. N. Alshareef, Adv. Mater. 2020, 32, 2000732–2000740;
- 14bJ. Yin, J. Jin, C. Chen, Y. Lei, Z. Tian, Y. Wang, Z. Zhao, A. H. Emwas, Y. Zhu, Y. Han, U. Schwingenschlögl, W. Zhang, H. N. Alshareef, Angew. Chem. Int. Ed. 2023, 62, e202301396;
- 14cL. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Angew. Chem. Int. Ed. 2019, 58, 10500–10505;
- 14dL. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi, M. Huang, D. Mitlin, Energy Storage Mater. 2020, 27, 212–225.
- 15
- 15aK. Zhang, Q. He, F. Xiong, J. Zhou, Y. Zhao, L. Mai, L. Zhang, Nano Energy 2020, 77, 105018–105026;
- 15bX. Lian, J. Zhou, Y. You, Z. Tian, Y. Yi, J. H. Choi, M. H. Rümmeli, J. Sun, Adv. Funct. Mater. 2022, 32, 2109969–2109978;
- 15cY. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou, J. Tian, N. Lin, Y. Qian, Angew. Chem. Int. Ed. 2019, 58, 18108–18115;
- 15dM. Shao, C. Li, T. Li, H. Zhao, W. Yu, R. Wang, J. Zhang, L. Yin, Adv. Funct. Mater. 2020, 30, 2006561–2006570;
- 15eL. Deng, Y. Hong, Y. Yang, J. Zhang, X. Niu, J. Wang, L. Zeng, W. Hao, L. Guo, Y. Zhu, ACS Nano 2021, 15, 18419–18428;
- 15fY. Sun, H. Wang, W. Wei, Y. Zheng, L. Tao, Y. Wang, M. Huang, J. Shi, Z. C. Shi, D. Mitlin, ACS Nano 2021, 15, 1652–1665;
- 15gX. Chen, H. Zhang, C. Ci, W. Sun, Y. Wang, ACS Nano 2019, 13, 3600–3607;
- 15hF. Xu, Y. Zhai, E. Zhang, Q. Liu, G. Jiang, X. Xu, Y. Qiu, X. Liu, H. Wang, S. Kaskel, Angew. Chem. Int. Ed. 2020, 132, 19628–19635;
- 15iJ. Chen, Y. Cheng, Q. Zhang, C. Luo, H. Y. Li, Y. Wu, H. Zhang, X. Wang, H. Liu, X. He, J. Han, D. L. Peng, M. Liu, M. S. Wang, Adv. Funct. Mater. 2021, 31, 2007158–2007169.
- 16
- 16aV. Augustyn, J. Come, M. A. Lowe, J. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518–522;
- 16bM. Liang, H. Zhang, B. Chen, X. Meng, J. Zhou, L. Ma, F. He, W. Hu, C. He, N. Zhao, Adv. Mater. 2023, 2307209.
- 17C. Zhang, X. Liu, Z. Li, C. Zhang, Z. Chen, D. Pan, M. Wu, Adv. Funct. Mater. 2021, 31, 2101470–2101479.
- 18H. Xie, B. Chen, C. Liu, G. Wu, S. Sui, E. Liu, G. Zhou, C. He, W. Hu, N. Zhao, Energy Storage Mater. 2023, 60, 102830–102839.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.