Methylene C(sp3)−H Arylation Enables the Stereoselective Synthesis and Structure Revision of Indidene Natural Products
Dr. Anton Kudashev
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorDr. Stefania Vergura
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorDr. Marco Zuccarello
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorProf. Dr. Thomas Bürgi
University of Geneva, Department of Physical Chemistry, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Olivier Baudoin
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorDr. Anton Kudashev
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorDr. Stefania Vergura
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
These authors contributed equally to this work.
Search for more papers by this authorDr. Marco Zuccarello
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorProf. Dr. Thomas Bürgi
University of Geneva, Department of Physical Chemistry, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Olivier Baudoin
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorAbstract
The divergent synthesis of two indane polyketides of the indidene family, namely (±)-indidene A (11 steps, 1.7 %) and (+)-indidene C (13 steps, 1.3 %), is reported. The synthesis of the trans-configured common indane intermediate was enabled by palladium(0)-catalyzed methylene C(sp3)−H arylation, which was performed in both racemic and enantioselective (e.r. 99 : 1) modes. Further elaboration of this common intermediate by nickel-catalyzed dehydrogenative coupling allowed the rapid installation of the aroyl moiety of (±)-indidene A. In parallel, the biphenyl system of (±)- and (+)-indidene C was constructed by Suzuki–Miyaura coupling. These investigations led us to revise the structures of indidenes B and C.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316103-sup-0001-IndideneC.cif224 KB | Supporting Information |
ange202316103-sup-0001-misc_information.pdf6.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Ahmed, Stud. Nat. Prod. Chem. 2016, 51, 383–434.
- 2P. Prasher, M. Sharma, ChemistrySelect 2021, 6, 2658–2677.
- 3R. He, X. Huang, Y. Zhang, L. Wu, H. Nie, D. Zhou, B. Liu, S. Deng, R. Yang, S. Huang, Z. Nong, J. Li, Y. Huang, J. Nat. Prod. 2016, 79, 2472–2478.
- 4Y. P. Li, Y. C. Yang, Y. K. Li, Z. Y. Jiang, X. Z. Huang, W. G. Wang, X. M. Gao, Q. F. Hu, Fitoterapia 2014, 95, 214–219.
- 5X. Li, F. Huang, B. Zhang, W. Tan, A. Khan, Z. Zhi-Hong, L. Liu, Z. Yang, Chem. Biodiversity 2022, 19, e202200188.
- 6
- 6aB. Gabriele, R. Mancuso, L. Veltri, Chem. Eur. J. 2016, 22, 5056–5094;
- 6bC. Borie, L. Ackermann, M. Nechab, Chem. Soc. Rev. 2016, 45, 1368–1386;
- 6cA. Rinaldi, D. Scarpi, E. G. Occhiato, Eur. J. Org. Chem. 2019, 7401–7419.
- 7Selected reviews:
- 7aJ. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960–9009;
- 7bD. Y. K. Chen, S. W. Youn, Chem. Eur. J. 2012, 18, 9452–9474;
- 7cR. R. Karimov, J. F. Hartwig, Angew. Chem. Int. Ed. 2018, 57, 4234–4241;
- 7dD. J. Abrams, P. A. Provencher, E. J. Sorensen, Chem. Soc. Rev. 2018, 47, 8925–8967;
- 7eO. Baudoin, Angew. Chem. Int. Ed. 2020, 59, 17798–17809;
- 7fN. Y. S. Lam, K. Wu, J.-Q. Yu, Angew. Chem. Int. Ed. 2021, 60, 15767–15790.
- 8
- 8aR. Melot, M. V. Craveiro, T. Bürgi, O. Baudoin, Org. Lett. 2019, 21, 812–815;
- 8bR. Melot, M. V. Craveiro, O. Baudoin, J. Org. Chem. 2019, 84, 12933–12945;
- 8cS. Gao, G. Qian, H. Tang, Z. Yang, Q. Zhou, ChemCatChem 2019, 11, 5762–5765;
- 8dZ. Zhuang, A. N. Herron, S. Liu, J.-Q. Yu, J. Am. Chem. Soc. 2021, 143, 687–692;
- 8eM. Tomanik, J.-Q. Yu, J. Am. Chem. Soc. 2023, 145, 17919–17925.
- 9B. Hong, C. Li, Z. Wang, J. Chen, H. Li, X. Lei, J. Am. Chem. Soc. 2015, 137, 11946–11949.
- 10J. Chen, Z. Shi, P. Lu, Org. Lett. 2021, 23, 7359–7363.
- 11O. Baudoin, Acc. Chem. Res. 2017, 50, 1114–1123.
- 12
- 12aM. Chaumontet, R. Piccardi, O. Baudoin, Angew. Chem. Int. Ed. 2009, 48, 179–182;
- 12bD. Dailler, G. Danoun, O. Baudoin, Angew. Chem. Int. Ed. 2015, 54, 4919–4922;
- 12cD. Dailler, G. Danoun, B. Ourri, O. Baudoin, Chem. Eur. J. 2015, 21, 9370–9379;
- 12dP. M. Holstein, D. Dailler, J. Vantourout, J. Shaya, A. Millet, O. Baudoin, Angew. Chem. Int. Ed. 2016, 55, 2805–2809;
- 12eR. Rocaboy, D. Dailler, O. Baudoin, Org. Lett. 2018, 20, 772–775;
- 12fP. Thesmar, O. Baudoin, J. Am. Chem. Soc. 2019, 141, 15779–15783;
- 12gP. Thesmar, S. Coomar, A. Prescimone, D. Häussinger, D. Gillingham, O. Baudoin, Chem. Eur. J. 2020, 26, 15298–15312.
- 13S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouységu, Angew. Chem. Int. Ed. 2011, 50, 586–621.
- 14M. Wheatley, M. Zuccarello, S. A. Macgregor, O. Baudoin, ACS Catal. 2023, 13, 12563–12570.
- 15R. Melot, M. Zuccarello, D. Cavalli, N. Niggli, M. Devereux, T. Bürgi, O. Baudoin, Angew. Chem. Int. Ed. 2021, 60, 7245–7250.
- 16S. Würtz, F. Glorius, Acc. Chem. Res. 2008, 41, 1523–1533.
- 17
- 17aT. Gaich, P. S. Baran, J. Org. Chem. 2010, 75, 4657–4673;
- 17bJ. Schwan, M. Christmann, Chem. Soc. Rev. 2018, 47, 7985–7995.
- 18L. C. Rosenbaum, M. Häfner, T. Gaich, Angew. Chem. Int. Ed. 2021, 60, 2939–2942.
- 19G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, Angew. Chem. Int. Ed. 2003, 42, 3690–3693.
- 20B. N. Kakde, N. Kumar, P. K. Mondal, A. Bisai, Org. Lett. 2016, 18, 1752–1755.
- 21T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685–4696.
- 22Deposition number 2291824 (for 2) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23F. Glorius, G. Altenhoff, R. Goddard, C. Lehmann, Chem. Commun. 2002, 2704–2705.
- 24C. Merten, T. P. Golub, N. M. Kreienborg, J. Org. Chem. 2019, 84, 8797–8814.
- 25T. Verheyen, L. van Turnhout, J. K. Vandavasi, E. S. Isbrandt, W. M. De Borggraeve, S. G. Newman, J. Am. Chem. Soc. 2019, 141, 6869–6874.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.