Self-Assembly of an [M8L24]16+ Intertwined Cube and a Giant [M12L16]24+ Orthobicupola
Arppitha Baby Sainaba
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
These authors contributed equally to this work.
Search for more papers by this authorMangili Venkateswarulu
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
These authors contributed equally to this work.
Search for more papers by this authorPallab Bhandari
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorJack K. Clegg
School of Chemistry and Molecular Biosciences, The University of Queensland-St. Lucia, St. Lucia, Queensland 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Partha Sarathi Mukherjee
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorArppitha Baby Sainaba
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
These authors contributed equally to this work.
Search for more papers by this authorMangili Venkateswarulu
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
These authors contributed equally to this work.
Search for more papers by this authorPallab Bhandari
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorJack K. Clegg
School of Chemistry and Molecular Biosciences, The University of Queensland-St. Lucia, St. Lucia, Queensland 4072 Australia
Search for more papers by this authorCorresponding Author
Prof. Partha Sarathi Mukherjee
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012 India
Search for more papers by this authorAbstract
Through coordination-driven self-assembly, aesthetically captivating structures can be formed by tuning the length or flexibility of various components. The self-assembly of an elongated rigid terphenyl-based tetra-pyridyl ligand (L1) with a cis-Pd(II) acceptor produces an [M12L16]24+ triangular orthobicupola structure (1). When flexibility is introduced into the ligand by the incorporation of a -CH2- group between the dipyridylamine and terphenyl rings in the ligand (L2), anunique [M8L24]16+ water-soluble ‘intertwined cubic structure’ (2) results. The inherent flexibility of ligand L2 might be the key factor behind the formation of the thermodynamically stable and ′intertwined cubic structure′ in this scenario. This research showcases the ability to design and fabricate novel, topologically distinctive molecular structures by a straightforward and efficient approach.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315572-sup-0001-misc_information.pdf1.8 MB | Supporting Information |
ange202315572-sup-0001-Spsm21jc14.cif16.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Li, J. K. Clegg, L. F. Lindoy, R. B. Macquart, G. V. Meehan, Nat. Commun. 2011, 2, 205;
- 1bJ. P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080–11093;
- 1cN. C. Lim, S. E. Jackson, J. Phys. Condens. Matter 2015, 27, 354101;
- 1dR. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464;
- 1eZ. Cui, G.-X. Jin, Nat. Synth. 2022, 1, 635–640.
- 2
- 2aJ. Vinograd, J. Lebowitz′, J. Gen. Physiol. 1966, 49, 103–125;
- 2bD. A. Clayton, J. Vinograd, Nature 1967, 216, 652–657.
- 3
- 3aC.-H. Lu, A. Cecconello, I. Willner, J. Am. Chem. Soc. 2016, 138, 5172–5185;
- 3bB. Hudson, J. Vinograd, Nature 1967, 216, 647–652.
- 4
- 4aR. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810–6918;
- 4bM. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418–3438;
- 4cS. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44, 419–432;
- 4dM. L. Saha, N. Mittal, J. W. Bats, M. Schmittel, Chem. Commun. 2014, 50, 12189–12192;
- 4eM. M. Smulders, A. Jiménez, J. R. Nitschke, Angew. Chem. Int. Ed. 2012, 51, 6681–6685;
- 4fC. Gütz, R. Hovorka, G. Schnakenburg, A. Lützen, Chem. Eur. J. 2013, 19, 10890–10894;
- 4gC.-B. Huang, L. Xu, J.-L. Zhu, Y.-X. Wang, B. Sun, X. Li, H.-B. Yang, J. Am. Chem. Soc. 2017, 139, 9459–9462;
- 4hX. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042–6065.
- 5
- 5aS. R. Seidel, P. J. Stang, Acc. Chem. Res. 2002, 35, 972–983;
- 5bS. Pullen, J. Tessarolo, G. H. Clever, Chem. Sci. 2021, 12, 7269–7293;
- 5cA. K. Bar, R. Chakrabarty, P. S. Mukherjee, Inorg. Chem. 2009, 48, 10880–10882;
- 5dK. Li, L.-Y. Zhang, C. Yan, S.-C. Wei, M. Pan, L. Zhang, C.-Y. Su, J. Am. Chem. Soc. 2014, 136, 4456–4459;
- 5eM. Kieffer, R. A. Bilbeisi, J. D. Thoburn, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2020, 132, 11465–11469.
10.1002/ange.202004627 Google Scholar
- 6
- 6aV. Martí-Centelles, A. L. Lawrence, P. J. Lusby, J. Am. Chem. Soc. 2018, 140, 2862–2868;
- 6bD. M. Kaphan, F. D. Toste, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2015, 137, 9202–9205;
- 6cA. N. Oldacre, A. E. Friedman, T. R. Cook, J. Am. Chem. Soc. 2017, 139, 1424–1427;
- 6dP. Howlader, P. Das, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2016, 138, 1668–1676;
- 6eJ. Jiao, C. Tan, Z. Li, Y. Liu, X. Han, Y. Cui, J. Am. Chem. Soc. 2018, 140, 2251–2259;
- 6fM. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2019, 378, 333–349.
- 7
- 7aD. Zhang, T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423–2436;
- 7bF. Schmitt, J. Freudenreich, N. P. E. Barry, L. Juillerat-Jeanneret, G. Süss-Fink, B. Therrien, J. Am. Chem. Soc. 2012, 134, 754–757;
- 7cB. Roy, A. K. Ghosh, S. Srivastava, P. D′Silva, P. S. Mukherjee, J. Am. Chem. Soc. 2015, 137, 11916–11919.
- 8
- 8aM. Zhang, M. L. Saha, M. Wang, Z. Zhou, B. Song, C. Lu, X. Yan, X. Li, F. Huang, S. Yin, P. J. Stang, J. Am. Chem. Soc. 2017, 139, 5067–5074;
- 8bA. K. Bar, S. Shanmugaraju, K.-W. Chi, P. S. Mukherjee, Dalton Trans. 2011, 40, 2257–2267;
- 8cX. Yan, H. Wang, C. E. Hauke, T. R. Cook, M. Wang, M. L. Saha, Z. Zhou, M. Zhang, X. Li, F. Huang, P. J. Stang, J. Am. Chem. Soc. 2015, 137, 15276–15286;
- 8dH. Y. Lin, L. Y. Zhou, L. Xu, Chem. Asian J. 2021, 16, 3805–3816;
- 8eZ. Li, X. Yan, F. Huang, H. Sepehrpour, P. J. Stang, Org. Lett. 2017, 19, 5728–5731.
- 9
- 9aD. Zhang, T. K. Ronson, Y.-Q. Zou, J. R. Nitschke, Nat Rev Chem 2021, 5, 168–182;
- 9bC. Zhu, H. Tang, K. Yang, Y. Fang, K.-Y. Wang, Z. Xiao, X. Wu, Y. Li, J. A. Powell, H.-C. Zhou, J. Am. Chem. Soc. 2021, 143, 12560–12566;
- 9cB.-N. T. Nguyen, J. D. Thoburn, A. B. Grommet, D. J. Howe, T. K. Ronson, H. P. Ryan, J. L. Bolliger, J. R. Nitschke, J. Am. Chem. Soc. 2021, 143, 12175–12180;
- 9dD. Zhang, T. K. Ronson, S. Güryel, J. D. Thoburn, D. J. Wales, J. R. Nitschke, J. Am. Chem. Soc. 2019, 141, 14534–14538;
- 9eD. Chakraborty, R. Saha, J. K. Clegg, P. S. Mukherjee, Chem. Sci. 2022, 13, 11764–11771;
- 9fP. C. Purba, M. Maity, S. Bhattacharyya, P. S. Mukherjee, Angew. Chem. Int. Ed. 2021, 60, 14109–14116;
- 9gW.-Y. Zhang, Y.-J. Lin, Y.-F. Han, G.-X. Jin, J. Am. Chem. Soc. 2016, 138, 10700–10707;
- 9hP. Howlader, S. Mondal, S. Ahmed, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 20968–20972;
- 9iD. Prajapati, P. Bhandari, N. Hickey, P. S. Mukherjee, Inorg. Chem. 2023, 62, 9230–9239;
- 9jY. F. Han, W. G. Jia, Y. J. Lin, G. X. Jin, Angew. Chem. Int. Ed. 2009, 48, 6234–6238;
- 9kX. Chang, S. Lin, G. Wang, C. Shang, Z. Wang, K. Liu, Y. Fang, P. J. Stang, J. Am. Chem. Soc. 2020, 142, 15950–15960;
- 9lR. Banerjee, D. Chakraborty, W. T. Jhang, Y. T. Chan, P. S. Mukherjee, Angew. Chem. Int. Ed. 2023, 135, e202305338.
- 10
- 10aS. Chen, K. Li, F. Zhao, L. Zhang, M. Pan, Y.-Z. Fan, J. Guo, J. Shi, C.-Y. Su, Nat. Commun. 2016, 7, 13169;
- 10bZ. Zhang, Z. Zhao, Y. Hou, H. Wang, X. Li, G. He, M. Zhang, Angew. Chem. Int. Ed. 2019, 58, 8862–8866;
- 10cA. Kumar, R. Saha, P. S. Mukherjee, Chem. Sci. 2021, 12, 5319–5329;
- 10dK. Acharyya, S. Bhattacharyya, H. Sepehrpour, S. Chakraborty, S. Lu, B. Shi, X. Li, P. S. Mukherjee, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14565–14569.
- 11
- 11aS. Bhattacharyya, M. Maity, A. Chowdhury, M. L. Saha, S. K. Panja, P. J. Stang, P. S. Mukherjee, Inorg. Chem. 2020, 59, 2083–2091;
- 11bR.-J. Li, J. J. Holstein, W. G. Hiller, J. Andréasson, G. H. Clever, J. Am. Chem. Soc. 2019, 141, 2097–2103;
- 11cM. Han, R. Michel, B. He, Y. S. Chen, D. Stalke, M. John, G. H. Clever, Angew. Chem. Int. Ed. 2013, 52, 1319–1323;
- 11dR.-J. Li, M. Han, J. Tessarolo, J. J. Holstein, J. Lübben, B. Dittrich, C. Volkmann, M. Finze, C. Jenne, G. H. Clever, ChemPhotoChem. 2019, 3, 378.
- 12
- 12aG. Cecot, M. Marmier, S. Geremia, R. D. Zorzi, A. V. Vologzhanina, P. Pattison, E. Solari, F. F. Tirani, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2017, 139, 8371–8381;
- 12bY. Ke, D. J. Collins, H.-C. Zhou, Inorg. Chem. 2005, 44, 4154–4156;
- 12cS.-F. Yuan, P. Li, Q. Tang, X.-K. Wan, Z.-A. Nan, D.-E. Jiang, Q.-M. Wang, Nanoscale 2017, 9, 11405–11409;
- 12dS. Bhattacharyya, S. R. Ali, M. Venkateswarulu, P. Howlader, E. Zangrando, M. De, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 18981–18989;
- 12eT. Wu, Z. Jiang, Q. Bai, Y. Li, S. Mao, H. Yu, L. Wojtas, Z. Tang, M. Chen, Z. Zhang, T. Z. Xie, M. Wang, X. Li, P. Wang, Chem 2021, 7, 2429–2441.
- 13
- 13aC. O. Dietrich-Buchecker, J. P. Sauvage, Angew. Chem. Int. Ed. 1989, 28, 189–192;
- 13bJ. Zhong, L. Zhang, D. P. August, G. F. Whitehead, D. A. Leigh, J. Am. Chem. Soc. 2019, 141, 14249–14256.
- 14L.-L. Dang, T.-T. Li, T.-T. Zhang, Y. Zhao, T. Chen, X. Gao, L.-F. Ma, G.-X. Jin, Chem. Sci. 2022, 13, 5130–5140.
- 15
- 15aN. Ponnuswamy, F. B. Cougnon, G. D. Pantos, J. K. Sanders, J. Am. Chem. Soc. 2014, 136, 8243–8251;
- 15bL.-L. Dang, Z.-B. Sun, W.-L. Shan, Y.-J. Lin, Z.-H. Li, G.-X. Jin, Nat. Commun. 2019, 10, 2057;
- 15cL.-L. Dang, H.-J. Feng, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2020, 142, 18946–18954.
- 16D. A. Leigh, F. Schaufelberger, L. Pirvu, J. H. Stenlid, D. P. August, J. Segard, Nature 2020, 584, 562–568.
- 17J. J. Danon, D. A. Leigh, S. Pisano, A. Valero, I. J. Vitorica-Yrezabal, Angew. Chem. Int. Ed. 2018, 57, 13833–13837.
- 18L. Zhang, A. J. Stephens, A. L. Nussbaumer, J.-F. Lemonnier, P. Jurček, I. J. Vitorica-Yrezabal, D. A. Leigh, Nat. Chem. 2018, 10, 1083–1088.
- 19D. A. Leigh, J. J. Danon, S. D. P. Fielden, J.-F. Lemonnier, G. F. S. Whitehead, S. L. Woltering, Nat. Chem. 2021, 13, 117–122.
- 20
- 20aR. S. Forgan, J.-P. Sauvage, J. F. Stoddart, Chem. Rev. 2011, 111, 5434–5464;
- 20bG. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110–6150;
- 20cW.-X. Gao, H.-J. Feng, B.-B. Guo, Y. Lu, G.-X. Jin, Chem. Rev. 2020, 120, 6288–6325;
- 20dZ. Ashbridge, S. D. Fielden, D. A. Leigh, L. Pirvu, F. Schaufelberger, L. Zhang, Chem. Soc. Rev. 2022, 51, 7779–7809;
- 20eJ. L. Algar, J. A. Findlay, J. D. Evans, D. Preston, Angew. Chem. Int. Ed. 2022, 61, e202210476;
- 20fH.-N. Zhang, W.-X. Gao, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 16057–16063.
- 21A. B. Sainaba, M. Venkateswarulu, P. Bhandari, K. S. A. Arachchige, J. K. Clegg, P. S. Mukherjee, J. Am. Chem. Soc. 2022, 144, 7504–7513.
- 22D.-N. Yan, L.-X. Cai, P.-M. Cheng, S.-J. Hu, L.-P. Zhou, Q.-F. Sun, J. Am. Chem. Soc. 2021, 143, 16087–16094.
- 23
- 23aS. T. Hyde, M. E. Evans, Proc. Natl. Acad. Sci. USA 2022, 119, e2110345118;
- 23bM. E. Evans, V. Robins, S. T. Hyde, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 471, 20150254;
- 23cM. O'keeffe, M. M. Treacy, Symmetry 2022, 14, 822.
- 24
- 24aY. Domoto, M. Abe, M. Fujita, J. Am. Chem. Soc. 2021, 143, 8578–8582;
- 24bL. L. Ma, Y. Li, X. Li, L. Zhang, L. Y. Sun, Y. F. Han, Angew. Chem. Int. Ed. 2022, 134, e202208376;
- 24cT. K. Ronson, J. Fisher, L. P. Harding, P. J. Rizkallah, J. E. Warren, M. J. Hardie, Nat. Chem. 2009, 1, 212–216;
- 24dT. Sawada, Y. Inomata, K. Shimokawa, M. Fujita, Nat. Commun. 2019, 10, 5687.
- 25I. A. Bhat, R. Jain, M. M. Siddiqui, D. K. Saini, P. S. Mukherjee, Inorg. Chem. 2017, 56, 5352–5360.
- 26
- 26aF. Zeng, J. Ni, Q. Wang, Y. Ding, S. W. Ng, W. Zhu, Y. Xie, Cryst. Growth Des. 2010, 10, 1611–1622;
- 26bA. Ajibola Adeyemo, A. Shettar, I. A. Bhat, P. Kondaiah, P. S. Mukherjee, Inorg. Chem. 2017, 56, 608–617.
- 27I. A. Bhat, A. Devaraj, E. Zangrando, P. S. Mukherjee, Chem. Eur. J. 2018, 24, 13938–13946.
- 28J. W. Shin, Y. H. Lee, J. Harrowfield, S. Hayami, Y. Kim, Polyhedron 2017, 130, 94–99.
- 29CCDC number (Complex 2) is 2299938.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.