Asymmetric (4+1) Annulations by Cascade Allylation and Transient σ-Alkyl-Pd(II) Initiated Allylic Csp3−H Activation
Haiyu Sun
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an, 710045 China
Search for more papers by this authorHui He
Department of Chemistry, Shantou University, Shantou, 515063 China
Search for more papers by this authorDr. Shao-Fei Ni
Department of Chemistry, Shantou University, Shantou, 515063 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wusheng Guo
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an, 710045 China
Search for more papers by this authorHaiyu Sun
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an, 710045 China
Search for more papers by this authorHui He
Department of Chemistry, Shantou University, Shantou, 515063 China
Search for more papers by this authorDr. Shao-Fei Ni
Department of Chemistry, Shantou University, Shantou, 515063 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wusheng Guo
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Yanxiang Road 99, Xi'an, 710045 China
Search for more papers by this authorAbstract
A unique Pd-catalyzed approach for asymmetric (4+1) annulations via cascade allylation and transient σ-alkyl-Pd(II) initiated methylene Csp3−H activation is reported. The enolate fragment derived from the decarboxylation of vinyl methylene carbonate is crucial to stabilize the key intermediate. These reactions enable the synthesis of various useful dihydrobenzofurans with excellent enantioselectivity, typically >95 : 5 er, and exclusive (Z)-stereoselectivity. Compared with the well-established annulations via Heck-type C−H activations, this protocol showcases a conceptually new way to generate σ-alkyl-Pd(II) species that could initiate challenging asymmetric Csp3−H activations.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315438-sup-0001-misc_information.pdf11.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. D. Wodrich, X. Hu, Nat. Chem. Rev. 2018, 2, 0099;
- 1bZ. C. Litman, Y. Wang, H. Zhao, J. F. Hartwig, Nature 2018, 560, 355–359;
- 1cM.-L. Li, J.-H. Yu, Y.-H. Li, S.-F. Zhu, Q.-L. Zhou, Science 2019, 366, 990–994;
- 1dD.-S. Kim, W.-J. Park, C.-H. Jun, Chem. Rev. 2017, 117, 8977–9015;
- 1eD.-F. Chen, Z.-Y. Han, X.-L. Zhou, L.-Z. Gong, Acc. Chem. Res. 2014, 47, 2365–2377.
- 2Selected reviews, please see:
- 2aB. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395–422;
- 2bB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2943;
- 2cL. Milhau, P. J. Guiry, Top. Organomet. Chem. 2011, 38, 95–153.
- 3Selected reviews, please refer to:
- 3aZ. Lu, S. Ma, Angew. Chem. Int. Ed. 2008, 47, 258–297;
- 3bM. Diéguez, O. Pàmies, Acc. Chem. Res. 2010, 43, 312–322;
- 3cC.-X. Zhuo, C. Zheng, S.-L. You, Acc. Chem. Res. 2014, 47, 2558–2573;
- 3dN. A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929–7967;
- 3eS. Afewerki, A. Córdova, Chem. Rev. 2016, 116, 13512–13570;
- 3fO. Pàmies, J. Margalef, S. Cañellas, J. James, E. Judge, P. J. Guiry, C. Moberg, J.-E. Bäckvall, A. Pfaltz, M. A. Pericàs, M. Diéguez, Chem. Rev. 2021, 121, 4373–4505.
- 4Selective racemic version of difunctionalized alkenes, please see:
- 4aV. Saini, L. Liao, Q. Wang, R. Jana, M. S. Sigman, Org. Lett. 2013, 15, 5008–5011;
- 4bK. Ohe, H. Matsude, T. Ishihara, S. Ogoshi, N. Chatani, S. Murai, J. Org. Chem. 1993, 58, 1173–1177;
- 4cJ. Jeon, H. Ryu, C. Lee, D. Cho, M.-H. Baik, S. Hong, J. Am. Chem. Soc. 2019, 141, 10048–10059.
- 5Selective review on the asymmetric Csp3−H activation, please refer to:
- 5aX. Zhang, Y. Shen, E. Bednářová, T. Rovis, in Catalytic Asymmetric Synthesis, 4th ed. (Eds.: T. Akiyama, I. Ojima), Wiley, Hoboken, 2022; pp. 429–490. Selective directing group assisted C(sp3)−H activation, please see:
- 5bB. Liu, A. M. Romine, C. Z. Rubel, K. M. Engle, B.-F. Shi, Chem. Rev. 2021, 121, 14957–15074;
- 5cE. L. Lucas, N. Y. S. Lam, Z. Zhuang, H. S. S. Chan, D. A. Strassfeld, J.-Q. Yu, Acc. Chem. Res. 2022, 55, 537–550.
- 6The σ-alkyl-Pd(II) species initiated asymmetric Csp3−H activation is extremely challenging. The pioneer work from the Cramer group at high temperatures (>100 °C), please refer to:
- 6aJ. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2015, 54, 11826–11829;
- 6bJ. Pedroni, M. Boghi, T. Saget, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 9064–9067. Sporadic racemic versions via Heck-type C−H activation mode were reported; in most cases, oxidative addition of aryl halogens or their alternatives have been used to trigger cascade reactions that form σ-alkyl(Csp3)−Pd(II) intermediates at high reaction temperatures (>100 °C):
- 6cT. Piou, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 2012, 51, 11561–11565;
- 6dW.-X. Wei, Y. Li, Y.-T. Wen, M. Li, X.-S. Li, C.-T. Wang, H.-C. Liu, Y. Xia, B.-S. Zhang, R.-Q. Jiao, Y.-M. Liang, J. Am. Chem. Soc. 2021, 143, 7868–7875;
- 6eD. S. Chung, J. S. Lee, H. Ryu, J. Park, H. Kim, J. H. Lee, U. B. Kim, W. K. Lee, M.-H. Baik, S. Lee, Angew. Chem. Int. Ed. 2018, 57, 15460–15464. Other generation pathways are extremely rare:
- 6fW. Du, Q. Gu, Z. Li, D. Yang, J. Am. Chem. Soc. 2015, 137, 1130–1135;
- 6gC. Jing, B. T. Jones, R. J. Adams, J. F. Bower, J. Am. Chem. Soc. 2022, 144, 16749–16754.
- 7P. E. M. Siegbahn, J. Phys. Chem. 1995, 99, 12723–12729.
- 8
- 8aZ. Du, Z. Shao, Chem. Soc. Rev. 2013, 42, 1337–1378;
- 8bY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222–234;
- 8cS. Martínez, L. Veth, B. Lainer, P. Dydio, ACS Catal. 2021, 11, 3891–3915.
- 9The vinyl methylene carbonate 1 could be easily synthesized from the annulation of propargylic alcohol and CO2: B. Yan, L. Zuo, X. Chang, T. Liu, M. Cui, Y. Liu, H. Sun, W. Chen, W. Guo, Org. Lett. 2021, 23, 351–357.
- 10
- 10aY. Liu, Y. He, Y. Liu, K. Wei, W. Guo, Org. Lett. 2022, 24, 2567–2572;
- 10bL. Zuo, P. Ma, T. Liu, X. Chen, R. H. Lavroff, W.-P. Chen, K. N. Houk, W. Guo, Org. Lett. 2021, 23, 7330–7335;
- 10cY. Yang, L. Zuo, K. Wei, W. Guo, Org. Lett. 2021, 23, 3195–3200;
- 10dL. Zuo, Y. Yang, W. Guo, Org. Lett. 2021, 23, 2013–2018;
- 10eH. Sun, Y. He, W. Guo, Org. Chem. Front. 2022, 9, 4861–4866. The Zi group also reported the decarboxylative transformation of this carbonate:
- 10fY. Zheng, T. Qin, W. Zi, J. Am. Chem. Soc. 2021, 143, 1038–1045.
- 11
- 11aA. Radadiya, A. Shah, Eur. J. Med. Chem. 2015, 97, 356–376;
- 11bM. D. Delost, D. T. Smith, B. J. Anderson, J. T. Njardarson, J. Med. Chem. 2018, 61, 10996–11020;
- 11cZ. Chen, M. Pitchakuntla, Y. Jia, Nat. Prod. Rep. 2019, 36, 666–690.
- 12Compound 2 is also a precursor of ortho-quino methide, please see:
- 12aN. J. Willis, C. D. Bray, Chem. Eur. J. 2012, 18, 9160–9173;
- 12bB. Yang, S. Gao, Chem. Soc. Rev. 2018, 47, 7926–7953;
- 12cT. N. Purdy, B. S. Moore, A. L. Lukowski, J. Nat. Prod. 2022, 85, 688–701.
- 13Deposition numbers 2214814 (product 9) and 2214815 (product 23) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 14Stereoselective synthesis of multi-substituted reactive α, β-unsaturated ketones is not an easy task but highly desired in synthetic chemistry, representative review please refer to:
- 14aX.-F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev. 2011, 40, 4986–5009;
- 14bS. Zhang, H. Neumann, M. Beller, Chem. Soc. Rev. 2020, 49, 3187–3210.
- 15
- 15aC. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao, Chem. Rev. 2017, 117, 7762–7810;
- 15bJ. W. Choi, B. K. Jang, N.-C. Cho, J.-H. Park, S. K. Yeon, E. J. Ju, Y. S. Lee, G. Han, A. N. Pae, D. J. Kim, K. D. Park, Bioorg. Med. Chem. 2015, 23, 6486–6496;
- 15cM. Hossain, U. Das, J. R. Dimmock, Eur. J. Med. Chem. 2019, 183, 111687.
- 16Reactivity of compound 2 and beyond, selective examples please refer to:
- 16aZ. Lai, Z. Wang, J. Sun, Org. Lett. 2015, 17, 6058–6061;
- 16bK. Zielke, M. Waser, Org. Lett. 2018, 20, 768–771;
- 16cO. El-Sepelgy, S. Haseloff, S. K. Alamsetti, C. Schneider, Angew. Chem. Int. Ed. 2014, 53, 7923–7927;
- 16dF. Göricke, C. Schneider, Angew. Chem. Int. Ed. 2018, 57, 14736–14741;
- 16eA. Suneja, H. J. Loui, C. Schneider, Angew. Chem. Int. Ed. 2020, 59, 5536–5540;
- 16fP. Chen, K. Wang, W. Guo, X. Liu, Y. Liu, C. Li, Angew. Chem. Int. Ed. 2017, 56, 3689–3693.
- 17With the aim to investigate stability of our products, we took compound 23 as an example for further experiments. It was found that enantiomeric ratio of product 23 was unchanged upon storage in air for 15 months or stirred with CsF (2 equiv) and CH3COOCs (2 equiv) in THF at room temperature for 24 h; this observation combined with the control experiment (Figure 3e) suggested that the reactions showcased in Figures 1–2 were not mediated by a carbanion derived from deprotonation of α-H under basic conditions. The observation of HRMS signal of intermediate t4-D1 (Figure 4) also supported the mechanism proposal.
- 18
- 18aK. X. Rodriguez, J. D. Vail, B. L. Ashfeld, Org. Lett. 2016, 18, 4514–4517;
- 18bJ. Izquierdo, A. Orue, K. A. Scheidt, J. Am. Chem. Soc. 2013, 135, 10634–10637;
- 18cQ.-Q. Yang, W.-J. Xiao, Eur. J. Org. Chem. 2017, 233–236;
- 18dY. Zhu, W.-Z. Zhang, L. Zhang, S. Luo, Chem. Eur. J. 2017, 23, 1253–1257.
- 19See Supporting Information for the effect of different fluorides on the productivity of the reactions. The CsF proved to be the best fluoride source, probably due to the better stabilizing ability of cesium cation to the enolate fragment. Selected related references, please refer to:
- 19aN. Kumar, I. Leray, A. Depauw, Coord. Chem. Rev. 2016, 310, 1–15;
- 19bC. Mayeux, L. Massi, J.-F. Gal, L. Charles, P. Burk, Chem. Eur. J. 2014, 20, 815–823.
- 20
- 20aB. M. Trost, Z. Jiao, J. Am. Chem. Soc. 2020, 142, 21645–21650;
- 20bB. M. Trost, Z. Zuo, Y. Wang, J. E. Schultz, ACS Catal. 2020, 10, 9496–9503.
- 21Selected references on benzyl palladium, please see:
- 21aZ. Yang, J. Zhou, J. Am. Chem. Soc. 2012, 134, 11833–11835;
- 21bB. M. Trost, L. C. Czabaniuk, J. Am. Chem. Soc. 2010, 132, 15534–15536;
- 21cB. M. Trost, L. C. Czabaniuk, Angew. Chem. Int. Ed. 2014, 53, 2826–2851.
- 22The reductive elimination from palladium complex to form a Csp3−Csp3 bond at rt has been reported, selected references please see:
- 22aH.-H. Zhang, J.-J. Zhao, S. Yu, J. Am. Chem. Soc. 2018, 140, 16914–16919;
- 22bM. Bao, H. Nakamura, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 759–760;
- 22cD. Milstein, J. K. Stille, J. Am. Chem. Soc. 1979, 101, 4981–4991;
- 22dH. Nakamura, M. Bao, Y. Yamamoto, Angew. Chem. Int. Ed. 2001, 40, 3208–3210;
10.1002/1521-3773(20010903)40:17<3208::AID-ANIE3208>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 22eJ. H. Simpson, J. K. Stille, J. Org. Chem. 1985, 50, 1759–1760.
- 23DFT-calculations were performed for the optimization of the ten-membered palladacycle t3 with ligand L8 instead of L11 for clarity. Please see the Supporting Information for details.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.