Nanographene with a Nitrogen-Doped Cavity
Fei-Fan Wang
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYu-Xiang Wang
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorQiong Wu
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLing Chai
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorXuan-Wen Chen
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuan-Zhi Tan
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorFei-Fan Wang
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYu-Xiang Wang
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorQiong Wu
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLing Chai
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorXuan-Wen Chen
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yuan-Zhi Tan
State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAbstract
Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315302-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Terrones, R. Lv, M. Terrones, M. S. Dresselhaus, Rep. Prog. Phys. 2012, 75, 062501.
- 2X. Yan, Y. Jia, X. Yao, Chem. Soc. Rev. 2018, 47, 7628–7658.
- 3C. Tang, H.-F. Wang, X. Chen, B.-Q. Li, T.-Z. Hou, B. Zhang, Q. Zhang, M.-M. Titirici, F. Wei, Adv. Mater. 2016, 28, 6845–6851.
- 4X. Wang, Y. Jia, X. Mao, L. Zhang, D. Liu, L. Song, X. Yan, J. Chen, D. Yang, J. Zhou, K. Wang, A. Du, X. Yao, Chem 2020, 6, 2009–2023.
- 5J. Zhu, S. Mu, Adv. Funct. Mater. 2020, 30, 2001097.
- 6M. Stepien, E. Gonka, M. Zyla, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716.
- 7X. Y. Wang, A. Narita, K. Müllen, Nat. Chem. Rev. 2018, 2, 0100.
- 8Y. Zhang, S. H. Pun, Q. Miao, Chem. Rev. 2022, 122, 14554–14593.
- 9Y. Zhu, J. Wang, Acc. Chem. Res. 2023, 56, 363–373.
- 10R. Yin, J. Wang, Z.-L. Qiu, J. Meng, H. Xu, Z. Wang, Y. Liang, X.-J. Zhao, C. Ma, Y.-Z. Tan, Q. Li, B. Wang, J. Am. Chem. Soc. 2022, 144, 14798–14808.
- 11Z. Wang, R. Yin, J. Meng, J. Wang, Y. Liang, C. Ma, S. Tan, Q. Li, J. Yang, B. Wang, J. Am. Chem. Soc. 2023, 145, 8445–8454.
- 12M. R. Ajayakumar, M. Di Giovannantonio, C. A. Pignedoli, L. Yang, P. Ruffieux, J. Ma, R. Fasel, X. L. Feng, J. Polym. Sci. 2022, 60, 1912–1917.
- 13P. H. Jacobse, R. D. McCurdy, J. W. Jiang, D. J. Rizzo, G. Veber, P. Butler, R. Zuzak, S. G. Louie, F. R. Fischer, M. F. Crommie, J. Am. Chem. Soc. 2020, 142, 13507–13514.
- 14C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M. V. Costache, M. Paradinas, M. Panighel, G. Ceballos, S. O. Valenzuela, D. Pena, A. Mugarza, Science 2018, 360, 199–203.
- 15R. Pawlak, X. S. Liu, S. Ninova, P. D′Astolfo, C. Drechsel, S. Sangtarash, R. Haner, S. Decurtins, H. Sadeghi, C. J. Lambert, U. Aschauer, S. X. Liu, E. Meyer, J. Am. Chem. Soc. 2020, 142, 12568–12573.
- 16X.-J. Zhao, H. Hou, P.-P. Ding, Z.-Y. Deng, Y.-Y. Ju, S.-H. Liu, Y.-M. Liu, C. Tang, L.-B. Feng, Y.-Z. Tan, Sci. Adv. 2020, 6, eaay8541.
- 17M. Di Giovannantonio, X. Yao, K. Eimre, J. I. Urgel, P. Ruffieux, C. A. Pignedoli, K. Müllen, R. Fasel, A. Narita, J. Am. Chem. Soc. 2020, 142, 12046–12050.
- 18H. Hou, X.-J. Zhao, C. Tang, Y.-Y. Ju, Z.-Y. Deng, X.-R. Wang, L.-B. Feng, D.-H. Lin, X. Hou, A. Narita, K. Müllen, Y.-Z. Tan, Nat. Commun. 2020, 11, 3976.
- 19W. Niu, Y. Fu, G. Serra, K. Liu, J. Droste, Y. Lee, Z. Ling, F. Xu, J. D. Gonzalez, A. Lucotti, J. P. Rabe, M. R. Hansen, W. Pisula, P. W. M. Blom, C.-A. Palma, M. Tommasini, Y. Mai, J. Ma, X. Feng, Angew. Chem. Int. Ed. 2023, 62, e202305737.
- 20U. Beser, M. Kastler, A. Maghsoumi, M. Wagner, C. Castiglioni, M. Tommasini, A. Narita, X. L. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 4322–4325.
- 21Q. Fan, D. Martin-Jimenez, S. Werner, D. Ebeling, T. Koehler, T. Vollgraff, J. Sundermeyer, W. Hieringer, A. Schirmeisen, J. M. Gottfried, J. Am. Chem. Soc. 2020, 142, 894–899.
- 22A. Tatibouet, R. Hancock, M. Demeunynck, J. Lhomme, Angew. Chem. Int. Ed. 1997, 36, 1190–1191.
- 23J. C. Buttrick, B. T. King, Chem. Soc. Rev. 2017, 46, 7–20.
- 24D. Reger, K. Schoell, F. Hampel, H. Maid, N. Jux, Chem. Eur. J. 2021, 27, 1984–1989.
- 25L. Chai, Y.-Y. Ju, J.-F. Xing, X.-H. Ma, X.-J. Zhao, Y.-Z. Tan, Angew. Chem. Int. Ed. 2022, 61, e202210268.
- 26M. Daigle, A. Picard-Lafond, E. Soligo, J.-F. Morin, Angew. Chem. Int. Ed. 2016, 55, 2042–2047.
- 27D. Miao, M. Daigle, A. Lucotti, J. Boismenu-Lavoie, M. Tommasini, J.-F. Morin, Angew. Chem. Int. Ed. 2018, 57, 3588–3592.
- 28D. Miao, V. Di Michele, F. Gagnon, C. Aumaitre, A. Lucotti, M. Del Zoppo, F. Lirette, M. Tommasini, J.-F. Morin, J. Am. Chem. Soc. 2021, 143, 11302–11308.
- 29E. Jin, Q. Yang, C.-W. Ju, Q. Chen, K. Landfester, M. Bonn, K. Müllen, X. Liu, A. Narita, J. Am. Chem. Soc. 2021, 143, 10403–10412.
- 30X. Xu, T. Xia, X.-L. Chen, X. Hao, T. Liang, H.-R. Li, H.-Y. Gong, New J. Chem. 2022, 46, 11835–11839.
- 31T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001–7045.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.