Total Synthesis of (+)-Discorhabdin V**
Brandon C. Derstine
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorAlina J. Cook
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorJames D. Collings
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorProf. Dr. Josep Saurí
Institut Químic de Sarrià (IQS), 08017 Barcelona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Dr. Eugene E. Kwan
Merck & Co., Inc., Boston, MA 02115 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Noah Z. Burns
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorBrandon C. Derstine
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorAlina J. Cook
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorJames D. Collings
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorProf. Dr. Josep Saurí
Institut Químic de Sarrià (IQS), 08017 Barcelona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Dr. Eugene E. Kwan
Merck & Co., Inc., Boston, MA 02115 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Noah Z. Burns
Department of Chemistry, Stanford University, Stanford, CA 94305 USA
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-tdhwj).
Abstract
The discorhabdin natural products are a large subset of pyrroloiminoquinone alkaloids with a myriad of biological activities. Despite garnering much synthetic attention, few members have thus far been completed, particularly those featuring a bridging carbon-nitrogen bond that is found in numerous discorhabdins, including discorhabdin V. Herein we report the first total synthesis and full stereochemical assignment of (+)-discorhabdin V. To access the pyrroloiminoquinone we developed a convergent N-alkylation/oxidative aminocyclization/bromination cascade that joins two key components, which are both made on multigram scale. An intramolecular Heck reaction then forms the quaternary carbon center in an intermediate containing the carbon-nitrogen bridge, and a reductive N,O-acetal cyclization sequence introduces the final piperidine ring. Furthermore, we have established the relative configuration of (+)-discorhabdin V through experimental NOESY data and DP4 NMR probability calculations. The absolute configuration of the natural product has also been determined by circular dichroism and the use of an amino acid derived chiral starting material. Our work represents one of only two reports of a total synthesis of a nitrogen-bridged discorhabdin and paves the way for future biological evaluation of such compounds.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315284-sup-0001-misc_information.pdf4.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews summarizing biological and structural diversity of the discorhabdins and related alkaloids, see:
- 1aJ. Hu, H. Fan, J. Xiong, S. Wu, Chem. Rev. 2011, 111, 5465–5491;
- 1bH. Fujioka, Y. Kita, Marine Pyrroloiminoquinone Alkaloids, Makaluvamines and Discorhabdins, and Marine Pyrrole-Imidazole Alkaloids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes (Eds.: K. G. Ramawat, J. Mérillon), Springer, Berlin, Heidelberg, 2013, pp 251–283;
- 1cE. M. Antunes, B. R. Copp, M. Davies-Coleman, T. Samaai, Nat. Prod. Rep. 2005, 22, 62–72;
- 1dJ. J. Kalinski, A. Polyzois, S. C. Waterworth, X. S. Noundou, R. A. Dorrington, Molecules 2022, 27, 8724.
- 2A. K. L. Goey, C. H. Chau, T. M. Sissung, K. M. Cook, D. J. Venzon, A. Castro, T. R. Ransom, C. J. Henrich, T. C. McKee, J. B. McMahon, T. Grkovic, M. M. Cadelis, B. R. Copp, K. R. Gustafson, W. D. Figg, J. Nat. Prod. 2016, 79, 1267–1275.
- 3
- 3aW. Tang, G. Zhao, Bioorg. Med. Chem. 2020, 28, 115235;
- 3bJ. Fallah, B. I. Rini, Curr. Oncol. Rep. 2019, 21, 6;
- 3cE. E. Wicks, G. L. Semenza, J. Clin. Invest. 2022, 132, e159839;
- 3dR. Ghosh, P. Samanta, R. Sarkar, S. Biswas, P. Saha, S. Hajra, A. Bhowmik, Molecules 2022, 27, 5192.
- 4A first-in-class HIF-2α inhibitor was recently approved by the FDA:
- 4aJ. Fallah et al. Clin. Cancer Res. 2022, 28, 4843–4848;
- 4bR. A. Toledo, C. Jimenez, G. Armaiz-Pena, C. Arenillas, J. Capdevila, P. L. M. Dahia, Endocr. Rev. 2023, 44, 312–322.
- 5E. M. Harris, J. D. Strope, S. L. Beedie, P. A. Huang, A. K. L. Goey, K. M. Cook, C. J. Schofield, C. H. Chau, M. M. Cadelis, B. R. Copp, K. R. Gustafson, W. D. Figg, Mar. Drugs 2018, 16, 241.
- 6
- 6aY. Kita, H. Tohma, M. Inagaki, K. Hatanaka, T. Yakura, J. Am. Chem. Soc. 1992, 114, 2175–2180;
- 6bS. Nishiyama, J. Cheng, C. L. Tao, S. Yamamura, Tetrahedron Lett. 1991, 32, 4151–4154;
- 6cK. M. Aubart, C. H. Heathcock, J. Org. Chem. 1999, 64, 16–22;
- 6dX. L. Tao, J. F. Cheng, S. Nishiyama, S. Yamamura, Tetrahedron 1994, 50, 2017–2028.
- 7Selected examples from total syntheses of makaluvamine-type alkaloids and pyrroloiminoquinone model studies:
- 7aJ. D. White, K. M. Yager, T. Yakura, J. Am. Chem. Soc. 1994, 116, 1831–1838;
- 7bE. V. Sadanandan, S. K. Pillai, M. V. Lakshmikantham, A. D. Billimoria, J. S. Culpepper, M. P. Cava, J. Org. Chem. 1995, 60, 1800–1805;
- 7cM. L. Makosza, J. Stalewski, O. S. Maslennikova, Synthesis 1997, 1131–1133;
- 7dE. V. Sadanandan, M. P. Cava, Tetrahedron Lett. 1993, 34, 2405–2408;
- 7eM. Iwao, O. Motoi, T. Fukuda, F. Ishibashi, Tetrahedron 1998, 54, 8999–9010;
- 7fJ. An, R. K. Jackson (III), J. P. Tuccinardi, J. L. Wood, Org. Lett. 2023, 25, 1868–1871;
- 7gY. Yamashita, L. Poignant, J. Sakata, H. Tokuyama, Org. Lett. 2020, 22, 6239–6243;
- 7hR. Zhao, W. A. Lown, Synth. Commun. 1997, 27, 2103–2110;
- 7iD. Roberts, M. Alvarez, J. A. Joule, Tetrahedron Lett. 1996, 37, 1509–1512;
- 7jJ. Backenköhler, B. Reck, M. Plaumann, P. Spiteller, Eur. J. Org. Chem. 2018, 2806–2816.
- 8
- 8aM. W. Smith, I. D. Falk, H. Ikemoto, N. Z. Burns, Tetrahedron 2019, 75, 3366–3370; The synthesis in the present manuscript was previously disclosed on ChemRxiv:
- 8bB. C. Derstine, A. J. Cook, J. D. Collings, J. Gair, J. Saurí, E. E. Kwan, N. Z. Burns, ChemRxiv preprint 2023, https://doi.org/10.26434/chemrxiv-2023-tdhwj.
10.26434/chemrxiv-2023-tdhwj Google Scholar
- 9
- 9aG. G. Kublak, P. N. Confalone, Tetrahedron Lett. 1990, 31, 3845–3848;
- 9bH. J. Knölker, K. Hartmann, Synlett 1991, 428–430;
- 9cJ. Cheng, S. Nishiyama, S. Yamamura, Chem. Lett. 1990, 1591–1594;
- 9dY. Kita, T. Yakura, H. Tohma, K. Kikuchi, Y. Tamura, Tetrahedron Lett. 1989, 30, 1119–1120.
- 10For an interesting recent model study, see: Q. Zhou, Y. S. Tao, J. B. Qiao, Y. M. Zhao, Org. Lett. 2023, 25, 4066–4069.
- 11
- 11aH. Tohma, Y. Harayama, M. Hashizume, M. Iwata, M. Egi, Y. Kita, Angew. Chem. Int. Ed. 2002, 41, 348–350;
10.1002/1521-3773(20020118)41:2<348::AID-ANIE348>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 11bH. Tohma, Y. Harayama, M. Hashizume, M. Iwata, Y. Kiyono, M. Egi, Y. Kita, J. Am. Chem. Soc. 2003, 125, 11235–11240.
- 12
- 12aT. Noro, S. Juri, H. Tokuyama, Tetrahedron Lett. 2021, 81, 153333;
- 12bM. Shimomura, K. Ide, J. Sakata, H. Tokuyama, J. Am. Chem. Soc. 2023, 145, 18233–18239;
- 12cC. F. C. Lam, T. Grkovic, A. N. Pearce, B. R. Copp Org. Biomol. Chem. 2012, 10, 3092–3097; For an impressive de novo synthesis of (±)-aleutianamine, see:
- 12dH. Yu, Z. Sercel, S. Rezgui, J. Farhi, S. Virgil, B. Stoltz ChemRxiv preprint 2023, https://doi.org/10.26434/chemrxiv-2023–2fs8n.
10.26434/chemrxiv-2023–2fs8n Google Scholar
- 13E. M. Antunes, D. R. Beukes, M. Kelly, T. Samaai, L. R. Barrows, K. M. Marshall, C. Sincich, M. T. Davies-Coleman, J. Nat. Prod. 2004, 67, 1268–1276.
- 14
- 14aM. El-Naggar, R. J. Capon, J. Nat. Prod. 2009, 72, 460–464;
- 14bJ. Jeon, Z. Na, M. Jung, H. Lee, C. J. Sim, K. Nahm, K. Oh, J. Nat. Prod. 2010, 73, 258–262.
- 15T. Grkovic, B. Kaur, V. L. Webb, B. R. Copp, Bioorg. Med. Chem. Lett. 2006, 16, 1944–1946.
- 16D. Magdziak, A. A. Rodriguez, R. W. Van De Water, T. R. R. Pettus, Org. Lett. 2002, 4, 285–288.
- 17L. C. Diaz, G. Diaz, A. A. Ferreira, P. R. R. Meira, E. Ferreira, Synthesis 2003, 603–622.
- 18J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901–16910.
- 19K. Omura, D. Swern, Tetrahedron 1978, 34, 1651–1660.
- 20J. L. Luche, J. Am. Chem. Soc. 1978, 100, 2226–2227.
- 21S. G. Smith, J. M. Goodman, J. Am. Chem. Soc. 2010, 132, 12946–12959.
- 22It is worth noting that both enantiomers of certain discorhabdins have been isolated from separate sources: T. Grkovic, Y. Ding, X. Li, V. L. Webb, D. Ferreira, B. R. Copp, J. Org. Chem. 2008, 73, 9133–9136.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.