Dormancy and double-activation strategy for construction of high-performance mixed-matrix membranes
Dr. Shuo Li
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorWei-Yao Han
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorZhao-Xu Wang
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorYu-Jie Sun
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorProf. Zilong Zheng
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Dr. Ming-Jie Yin
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Prof. Shaomin Liu
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA 6102 Australia
Search for more papers by this authorCorresponding Author
Prof. Quan-Fu An
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorDr. Shuo Li
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorWei-Yao Han
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorZhao-Xu Wang
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorYu-Jie Sun
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorProf. Zilong Zheng
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Dr. Ming-Jie Yin
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorCorresponding Author
Prof. Shaomin Liu
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA 6102 Australia
Search for more papers by this authorCorresponding Author
Prof. Quan-Fu An
Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124 China
Search for more papers by this authorAbstract
Mixed-matrix membranes (MMMs) have the potential for energy-efficient gas separation by matching the superior mass transfer and anti-plasticization properties of the fillers with processability and scaling up features of the polymers. However, construction of high-performance MMMs has been prohibited due to low filler-loading and the existence of interfacial defects. Here, high MOF-loaded, i.e., 55 wt %, MMMs are developed by a ‘dormancy and double-activation’ (DDA) strategy. High MOF precursor concentration suppresses crystallization in the membrane casting solution, realizing molecular level mixing of all components. Then, the polymeric matrix was formed with uniform encapsulation of MOF nutrients. Subsequently, double-activation was employed to induce MOF crystallization: the alkali promotes MOFs nucleation to harvest small porous nanocrystals while excessive ligands activate the metal ions to enhance the MOFs conversion. As such, quasi-semi-continuous mass transfer channels can be formed in the MMMs by the connected MOFs nanocrystals to boost the gas permeability. The optimized MMM shows significantly ameliorated CO2 permeability, i.e., 2841 Barrer, five-fold enhancement compared with pristine polymer membrane, with a good CO2/N2 selectivity of 36. Besides, the nanosized MOFs intensify their interaction with polymer chains, endowing the MMMs with good anti-plasticization behaviour and stability, which advances practical application of MMMs in carbon capture.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315167-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Welsby, J. Price, S. Pye, P. Ekins, Nature 2021, 597, 230–234.
- 2
- 2aS. J. Zeng, X. P. Zhang, L. Bai, X. C. Zhang, H. Wang, J. J. Wang, D. Bao, M. D. Li, X. Y. Liu, S. J. Zhang, Chem. Rev. 2017, 117, 9625–9673;
- 2bX. Jiang, S. W. Li, L. Shao, Energy Environ. Sci. 2017, 10, 1339–1344;
- 2cA. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Adv. Funct. Mater. 2008, 18, 2815–2823.
- 3
- 3aM. Jahandar Lashaki, S. Khiavi, A. Sayari, Chem. Soc. Rev. 2019, 48, 3320–3405;
- 3bA. Baltar, D. Gómez-Díaz, J. M. Navaza, A. Rumbo, AIChE J. 2019, 66, e16770.
- 4
- 4aD. S. Sholl, R. P. Lively, Nature 2016, 532, 435;
- 4bH. Z. Yu, X. Y. Qiu, N. Moreno, Z. W. Ma, V. M. Calo, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2015, 54, 13937–13941;
- 4cS. Li, S. M. Chang, M. J. Yin, W. H. Zhang, W. S. Sun, A. Shiue, Q. F. An, J. Membr. Sci. 2022, 652;
- 4dW. S. Sun, M. J. Yin, W. H. Zhang, S. Li, N. X. Wang, Q. F. An, ACS Sustainable Chem. Eng. 2021, 9, 10167–10175.
- 5
- 5aT. C. Merkel, H. Q. Lin, X. T. Wei, R. Baker, J. Membr. Sci. 2010, 359, 126–139;
- 5bZ.-X. Wang, W.-H. Zhang, G. Yu, M.-J. Yin, S. Li, Q.-F. An, Chem. Eng. Sci. 2023, 282, 119354.
- 6
- 6aH. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Science 2017, 356, eaab0530;
- 6bM. L. Jue, V. Breedveld, R. P. Lively, J. Membr. Sci. 2017, 530, 33–41;
- 6cB. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci, P. Bernardo, G. Clarizia, E. Esposito, M. Monteleone, M. Dendisová, K. Friess, P. M. Budd, J. C. Jansen, J. Membr. Sci. 2018, 555, 483–496;
- 6dZ.-X. Wang, W.-S. Sun, W.-H. Zhang, S. Li, M.-J. Yin, Q.-F. An, Sep. Purif. Technol. 2023, 322, 124348.
- 7
- 7aJ. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, C. J. Sumby, Angew. Chem. Int. Ed. 2017, 56, 9292–9310;
- 7bX. Y. Tan, S. Robijns, R. Thür, Q. Ke, N. D. Witte, A. Lamaire, Y. Li, I. Aslam, D. V. Havere, T. Donckels, T. V. Assche, V. V. Speybroeck, M. Dusselier, I. Vankelecom, Science 2022, 378, 1189–1194.
- 8
- 8aH. Furukawa, K. E. Cordova, M. O′Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 8bQ. H. Qian, P. A. Asinger, M. J. Lee, G. Han, K. M. Rodriguez, S. Lin, F. M. Benedetti, A. X. Wu, W. S. Chi, Z. P. Smith, Chem. Rev. 2020, 120, 8161–8266;
- 8cS. Li, W. Y. Han, Q. F. An, K. T. Yong, M. J. Yin, Adv. Funct. Mater. 2023, 33, 2303447;
- 8dW. H. Zhang, M. J. Yin, Q. Zhao, C. G. Jin, N. X. Wang, S. Ji, C. L. Ritt, M. Elimelech, Q. F. An, Nat. Nanotechnol. 2021, 16, 337–343.
- 9
- 9aN. C. Su, D. T. Sun, C. M. Beavers, D. K. Britt, W. L. Queen, J. J. Urban, Energy Environ. Sci. 2016, 9, 922–931;
- 9bC. E. Li, A. H. Qi, Y. Ling, Y. Tao, Y.-B. Zhang, T. Li, Sci. Adv. 2023, 9, eadf5087.
- 10
- 10aN. C. Su, Z. P. Smith, B. D. Freeman, J. J. Urban, Chem. Mater. 2015, 27, 2421–2429;
- 10bC. Li, J. Liu, K. Zhang, S. Zhang, Y. Lee, T. Li, Angew. Chem. Int. Ed. 2021, 60, 14138–14145;
- 10cT. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I. X. F. X. Llabres, J. Gascon, Nat. Mater. 2015, 14, 48–55;
- 10dS. J. Datta, A. Mayoral, N. M. S. Bettahalli, P. M. Bhatt, M. Karunakaran, I. D. Carja, D. Fan, P. G. M. Mileo, R. Semino, G. Maurin, O. Terasaki, M. Eddaoudi, Science 2022, 376, 1080–1087.
- 11
- 11aJ. Dechnik, C. J. Sumby, C. Janiak, Cryst. Growth Des. 2017, 17, 4467–4488;
- 11bT. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, S. Nair, Angew. Chem. Int. Ed. 2010, 49, 9863–9866;
- 11cB. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. L. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Nat. Energy 2017, 2, 17086.
- 12
- 12aL. Ma, F. Svec, Y. Q. Lv, T. W. Tan, J. Mater. Chem. A 2019, 7, 20293–20301;
- 12bS. Li, Y.-J. Sun, Z.-X. Wang, C.-G. Jin, M.-J. Yin, Q.-F. An, Small 2023, 19, 2208177.
- 13K. Shen, L. Zhang, X. D. Chen, L. M. Liu, D. L. Zhang, Y. Han, J. Y. Chen, J. Long, R. Luque, Y. W. Li, B. L. Chen, Science 2018, 359, 206–210.
- 14J. Troyano, A. Carné-Sánchez, C. Avci, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534–5546.
- 15
- 15aX. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 2006, 45, 1557–1559;
- 15bH. Sun, F. K. Wang, X. T. Li, J. Caro, H. Meng, N. X. Wang, Q.-F. An, Angew. Chem. Int. Ed. 2023, 62, e202300262.
- 16
- 16aA. Carné, C. Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2011, 40, 291–305;
- 16bL. Ge, W. Zhou, V. Rudolph, Z. H. Zhu, J. Mater. Chem. A 2013, 1, 6350–6358.
- 17D. H. Liu, L. Xiang, H. Chang, K. Chen, C. Q. Wang, Y. C. Pan, Y. S. Li, Z. Y. Jiang, Chem. Eng. Sci. 2019, 204, 151–160.
- 18W. Han, M. J. Yin, W. H. Zhang, Z. J. Liu, N. Wang, K. T. Yong, Q. F. An, Adv. Sci. 2021, 8, e2102594.
- 19C. Zhang, R. P. Lively, K. Zhang, J. R. Johnson, O. Karvan, W. J. Koros, J. Phys. Chem. Lett. 2012, 3, 2130–2134.
- 20
- 20aT. X. Yang, T.-S. Chung, J. Mater. Chem. A 2013, 1, 6081;
- 20bL. Xiang, L. Q. Sheng, C. Q. Wang, L. X. Zhang, Y. C. Pan, Y. S. Li, Adv. Mater. 2017, 29, 1606999.
- 21
- 21aL. Martínez-Izquierdo, C. Téllez, J. Coronas, J. Mater. Chem. A 2022, 10, 18822–18833;
- 21bW.-S. Sun, M.-J. Yin, W.-H. Zhang, S. Li, N. X. Wang, Q.-F. An, Green Energy & Environ. 2023, 8, 1389–1397.
- 22D. Olasz, J. Lendvai, A. Szallas, G. Gulyas, N. Q. Chinh, Micromachines 2020, 11, 1023.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.