Bicyclic Guanidine Promoted Mechanistically Divergent Depolymerization and Recycling of a Biobased Polycarbonate
David H. Lamparelli
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorAlba Villar-Yanez
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Departament de Química Física i Inorgànica/, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorLorenz Dittrich
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorJeroen Rintjema
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Fernando Bravo
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Carles Bo
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Departament de Química Física i Inorgànica/, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Arjan W. Kleij
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorDavid H. Lamparelli
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorAlba Villar-Yanez
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Departament de Química Física i Inorgànica/, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007 Tarragona, Spain
These authors contributed equally to this work.
Search for more papers by this authorLorenz Dittrich
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorJeroen Rintjema
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Fernando Bravo
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Carles Bo
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Departament de Química Física i Inorgànica/, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Arjan W. Kleij
Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorAbstract
We here report the organocatalytic and temperature-controlled depolymerization of biobased poly(limonene carbonate) providing access to its trans-configured cyclic carbonate as the major product. The base TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) offers a unique opportunity to break down polycarbonates via end-group activation or main chain scission pathways as supported by various controls and computational analysis. These energetically competitive processes represent an unprecedented divergent approach to polycarbonate recycling. The trans limonene carbonate can be converted back to its polycarbonate via ring-opening polymerization using the same organocatalyst in the presence of an alcohol initiator, offering thus a potential circular and practical route for polycarbonate recycling.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314659-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
ange202314659-sup-0001-mo_RINJ048F10_0m.cif223 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Zheng, Y. Wu, Z. Hu, S. Wang, X. Jiao, J. Zhu, Y. Sun, Y. Xie, Chem. Soc. Rev. 2023, 52, 8–29;
- 1bA. Ofondu, C. Iroegbu, S. S. Ray, V. Mbarane, J. C. Bordado, J. P. Sardinha, ACS Omega 2021, 6, 19343–19355;
- 1cT. P. Haider, C. Völker, J. Kramm, K. Landfester, F. R. Wurm, Angew. Chem. Int. Ed. 2019, 58, 50–62;
- 1dG. W. Coates, Y. D. Y. L. Getzler, Nat. Rev. Mater. 2020, 5, 501–516.
- 2
- 2aM. R. Johansen, T. B. Christensen, T. M. Ramos, K. Syberg, J. Environ. Manage. 2022, 302, 113975;
- 2bJ.-G. Rosenboom, R. Langer, G. Traverso, Nat. Rev. Mater. 2022, 7, 117–137;
- 2cM. Bachmann, C. Zibunas, J. Hartmann, V. Tulus, S. Suh, G. Guillén-Gosálbez, A. Bardow, Nat. Sustainability 2023, 6, 599–610;
- 2dY. Liu, X.-B. Lu, Chem. Eur. J. 2023, 29, e202203635.
- 3
- 3aX.-L. Li, R. W. Clarke, H.-Y. An, R. R. Gowda, J.-Y. Jiang, T.-Q. Xu, E.-Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202303791;
- 3bC. Li, L. Wang, Q. Yan, F. Liu, Y. Shen, Z. Li, Angew. Chem. Int. Ed. 2022, 61, e202201407;
- 3cB. A. Abel, R. L. Snyder, G. W. Coates, Science 2021, 373, 783–789;
- 3dH. G. Hester, B. A. Abel, G. W. Coates, J. Am. Chem. Soc. 2023, 145, 8800–8804;
- 3eD. T. Sheppard, K. Jin, L. S. Hamachi, W. Dean, D. J. Fortman, C. J. Ellison, W. R. Dichtel, ACS Cent. Sci. 2020, 6, 921–927.
- 4
- 4aJ. Xu, E. Feng, J. Song, J. Appl. Polym. Sci. 2014, 131, 39822;
- 4bT. Artham, M. Doble, Macromol. Biosci. 2008, 8, 14–24;
- 4cW. Yu, E. Maynard, V. Chiaradia, M. C. Arno, A. P. Dove, Chem. Rev. 2021, 121, 10865–10907;
- 4dR. P. Brannigan, A. P. Dove, Biomater. Sci. 2017, 5, 9–21.
- 5For some selected reviews:
- 5aS. Paul, Y. Zhu, C. Romain, R. Brooks, P. K. Saini, C. K. Williams, Chem. Commun. 2015, 51, 6459–6479;
- 5bX.-B. Lu, W. Ren, G. Wu, Acc. Chem. Res. 2012, 45, 1721–1735;
- 5cG. Bhat, D. J. Darensbourg, Green Chem. 2022, 24, 5007–5034.
- 6Some examples:
- 6aD. J. Darensbourg, Chem. Rev. 2007, 107, 2388–2410;
- 6bS. Klaus, M. W. Lehenmeier, C. E. Anderson, B. Rieger, Coord. Chem. Rev. 2011, 255, 1460–1479;
- 6cM. I. Childers, J. M. Longo, N. J. Van Zee, A. M. LaPointe, G. W. Coates, Chem. Rev. 2014, 114, 8129–8152.
- 7Coates first reported on a bis-diiminate Zn complex as an active catalyst for PLC formation:
- 7aC. M. Byrne, S. D. Allen, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2004, 126, 11404–11405; others also reported on similar types of Zn-based complexes as catalysts, see:
- 7bO. Hauenstein, M. Reiter, S. Agarwal, B. Rieger, A. Greiner, Green Chem. 2016, 18, 760;
- 7cC. Li, R. J. Sablong, C. E. Koning, Angew. Chem. Int. Ed. 2016, 55, 11572–11576;
- 7dM. Reiter, S. Vagin, A. Kronast, C. Jandl, B. Rieger, Chem. Sci. 2017, 8, 1876–1882. Kleij et al. reported on a binary catalyst composed of an Al-complex and a chloride salt:
- 7eL. Peña Carrodeguas, J. González-Fabra, F. Castro-Gómez, C. Bo, A. W. Kleij, Chem. Eur. J. 2015, 21, 6115–6122;
- 7fC. Martín, A. W. Kleij, Macromolecules 2016, 49, 6285–6295.
- 8
- 8aF. Auriemma, C. De Rosa, M. R. Di Caprio, R. Di Girolamo, W. C. Ellis, G. W. Coates, Angew. Chem. Int. Ed. 2015, 54, 1215–1218;
- 8bO. Hauenstein, S. Agarwal, A. Greiner, Nat. Commun. 2016, 7, 11862;
- 8cN. Kindermann, A. Cristòfol, A. W. Kleij, ACS Catal. 2017, 7, 3860–3863;
- 8dC. Li, R. J. Sablong, C. E. Koning, Eur. Polym. J. 2015, 67, 449–458;
- 8eS. Brooks, D. Merckle, A. C. Weems, ACS Sustainable Chem. Eng. 2023, 11, 10252–10263;
- 8fS. Neumann, L.-C. Leitner, H. Schmalz, S. Agarwal, A. Greiner, ACS Sustainable Chem. Eng. 2020, 8, 6442–6448;
- 8gV. Bonamigo Moreira, C. Alemán, J. Rintjema, F. Bravo, A. W. Kleij, E. Armelin, ChemSusChem 2022, 15, e202102624;
- 8hV. Bonamigo Moreira, J. Rintjema, F. Bravo, A. W. Kleij, L. Franco, J. Puiggalí, E. Alemán, ACS Sustainable Chem. Eng. 2022, 10, 2708–2719;
- 8iL. Peña Carrodeguas, T. T. D. Chen, G. L. Gregory, G. S. Sulley, C. K. Williams, Green Chem. 2020, 22, 8298–8307;
- 8jT. Stößer, C. Li, J. Unruangsri, P. K. Saini, R. J. Sablong, M. A. R. Meier, C. K. Williams, C. E. Koning, Polym. Chem. 2017, 8, 6099–6105.
- 9A. Brandolese, A. W. Kleij, Acc. Chem. Res. 2022, 55, 1634–1645.
- 10C. Li, R. J. Sablong, R. A. T. M. van Benthem, C. E. Koning, ACS Macro Lett. 2017, 6, 684–688. See also Ref. [8i].
- 11
- 11aW. C. Ellis, Y. Jung, M. Mulzer, R. Di Girolamo, E. B. Lobkovsky, G. W. Coates, Chem. Sci. 2014, 5, 4004–4011;
- 11bD. J. Darensbourg, S.-H. Wei, A. D. Yeung, W. C. Ellis, Macromolecules 2013, 46, 5850–5855;
- 11cD. J. Darensbourg, S.-H. Wei, S. J. Wilson, Macromolecules 2013, 46, 3228–3233;
- 11dY. Liu, H. Zhou, J.-Z. Guo, W.-M. Ren, X.-B. Lu, Angew. Chem. Int. Ed. 2017, 56, 4862–4866;
- 11eF. N. Singer, A. C. Deacy, T. M. McGuire, C. K. Williams, A. Buchard, Angew. Chem. Int. Ed. 2022, 61, e202201785; see also Ref. [10].
- 12As far as we know, only the systematic catalytic ROP of trans-cyclohexene carbonate has been studied:
- 12aA. K. Diallo, E. Kirillov, M. Slawinski, J.-M. Brusson, S. M. Guillaume, J.-F. Carpentier, Polym. Chem. 2015, 6, 1961–1971;
- 12bW. Guerin, A. K. Diallo, E. Kirilov, M. Helou, M. Slawinski, J.-M. Brusson, J.-F. Carpentier, S. M. Guillaume, Macromolecules 2014, 47, 4230–4235;
- 12cM. Kawamoto, Y. Mori, A. Tsuge, T. Endo, J. Polym. Sci. 2022, 60, 1416–1421.
- 13
- 13aW. Guo, J. González-Fabra, N. A. G. Bandeira, C. Bo, A. W. Kleij, Angew. Chem. Int. Ed. 2015, 54, 11686–11690;
- 13bS. Sopeña, V. Laserna, W. Guo, E. Martin, E. C. Escudero-Adán, A. W. Kleij, Adv. Synth. Catal. 2016, 358, 2172–2178.
- 14For reference data see:
- 14aG. Fiorani, M. Stuck, C. Martín, M. Martínez-Belmonte, E. Martin, E. C. Escudero-Adán, A. W. Kleij, ChemSusChem 2016, 9, 1304–1311;
- 14bM. Bähr, A. Bitto, R. Mülhaupt, Green Chem. 2012, 14, 1447–1454.
- 15The trans : cis ratio (%) is here around 65 : 35, which is close to the one present in the parent PLC (trans : cis=70 : 30) produced using the original procedure described in Ref. [7e] using 1 mol % of Al-complex and 0.5 mol % of PPNCl at 45 °C and 10 bar CO2.
- 16Crystallographic analysis of crystalline LC showed unambiguously the trans fusion of the carbonate ring. The crystal turned out to be the “trans” isomer, which is the major constituent in the isolated sample for LC. Deposition number 2291742 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service. Trans-configured bicyclic carbonates are generally believed to form by end-group activation following polymer back-biting.
- 17TBD has been shown to interact with and bind CO2 producing a zwitterionic structure, see: C. Villiers, J.-P. Dognon, R. Pollet, P. Thuéry, M. Ephritikhine, Angew. Chem. Int. Ed. 2010, 49, 3465–3468.
- 18A possible decarboxylation pathway involves TBD-based H-bond activation/decarboxylation of the carbonate forming a TBD-CO2 zwitterionic intermediate (see Ref. [17]), and concomitant formation of the epoxide.
- 19For the synthesis of the two terpolymers see: D. H. Lamparelli, I. Grimaldi, A. Martínez-Carrión, F. Bravo, A. W. Kleij, ACS Sustainable Chem. Eng. 2023, 11, 8193–8198.
- 20All calculations were performed using the ωB97XD/6-311G** functional and basis set with implicit solvent model SMD with acetonitrile parameters at 353.15 K (Gaussian16). Standard state entropic corrections were applied to the Gibbs Free energies. Further details of the DFT studies can be extracted from: https://doi.org/10.19061/iochem-bd-1-292.
10.19061/iochem-bd-1-292 Google Scholar
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.