One-Dimensionally Arranged Quantum-Dot Superstructures Guided by a Supramolecular Polymer Template
Corresponding Author
Dr. Mitsuaki Yamauchi
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorKanako Nakatsukasa
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330 Japan
Search for more papers by this authorNaoki Kubo
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330 Japan
Search for more papers by this authorProf. Dr. Hiroko Yamada
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Sadahiro Masuo
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330 Japan
Search for more papers by this authorCorresponding Author
Dr. Mitsuaki Yamauchi
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorKanako Nakatsukasa
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330 Japan
Search for more papers by this authorNaoki Kubo
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330 Japan
Search for more papers by this authorProf. Dr. Hiroko Yamada
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Sadahiro Masuo
Department of Applied Chemistry for Environment, Kwansei Gakuin University, 1 Gakuen, Uegahara, Sanda, Hyogo, 669-1330 Japan
Search for more papers by this authorAbstract
Colloidal quantum dots (QDs) exhibit important photophysical properties, such as long-range energy diffusion, miniband formation, and collective photoluminescence, when aggregated into well-defined superstructures, such as three-dimensional (3D) and two-dimensional (2D) superlattices. However, the construction of one-dimensional (1D) QD superstructures, which have a simpler arrangement, is challenging; therefore, the photophysical properties of 1D-arranged QDs have not been studied previously. Herein, we report a versatile strategy to obtain 1D-arranged QDs using a supramolecular polymer (SP) template. The SP is composed of self-assembling cholesterol derivatives containing two amide groups for hydrogen bonding and a carboxyl group as an adhesion moiety on the QDs. Upon mixing the SP and dispersed QDs in low-polarity solvents, the QDs self-adhered to the SP and self-arranged into 1D superstructures through van der Waals interactions between the surface organic ligands of the QDs, as confirmed by transmission electron microscopy. Furthermore, we revealed efficient photoinduced fluorescence resonance energy transfer between the 1D-arranged QDs by an in-depth analysis of the emission spectra and decay curves.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202314329-sup-0001-misc_information.pdf13.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. V. Talapin, J. S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2010, 110, 389–458.
- 2W. R. Algar, K. Susumu, J. B. Delehanty, I. L. Medintz, Anal. Chem. 2011, 83, 8826–8837.
- 3M. K. Choi, J. Yang, T. Hyeon, D.-H. Kim, npj Flexible Electron. 2018, 2, 10.
- 4Y. Shu, X. Lin, H. Qin, Z. Hu, Y. Jin, X. Peng, Angew. Chem. Int. Ed. 2020, 59, 22312–22323.
- 5M. A. Boles, M. Engel, D. V. Talapin, Chem. Rev. 2016, 116, 11220–11289.
- 6D. Guo, Y. Song, Chem. Eur. J. 2018, 24, 16196–16208.
- 7N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, M. Zamkov, ACS Energy Lett. 2016, 2, 154–160.
- 8M. Matsubara, W. Stevenson, J. Yabuki, X. B. Zeng, H. L. Dong, K. Kojima, S. F. Chichibu, K. Tamada, A. Muramatsu, G. Ungar, K. Kanie, Chem 2017, 2, 860–876.
- 9H. Tahara, M. Sakamoto, T. Teranishi, Y. Kanemitsu, Phys. Rev. B 2021, 104, L241405.
- 10D. Kim, S. Tomita, K. Ohshiro, T. Watanabe, T. Sakai, I. Y. Chang, K. Hyeon-Deuk, Nano Lett. 2015, 15, 4343–4347.
- 11G. Raino, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, T. Stoferle, Nature 2018, 563, 671–675.
- 12T. Lee, K. Enomoto, K. Ohshiro, D. Inoue, T. Kikitsu, K. Hyeon-Deuk, Y. J. Pu, D. Kim, Nat. Commun. 2020, 11, 5471.
- 13C. Zhou, Y. Zhong, H. Dong, W. Zheng, J. Tan, Q. Jie, A. Pan, L. Zhang, W. Xie, Nat. Commun. 2020, 11, 329.
- 14E. Penzo, A. Loiudice, E. S. Barnard, N. J. Borys, M. J. Jurow, M. Lorenzon, I. Rajzbaum, E. K. Wong, Y. Liu, A. M. Schwartzberg, S. Cabrini, S. Whitelam, R. Buonsanti, A. Weber-Bargioni, ACS Nano 2020, 14, 6999–7007.
- 15F. Krieg, P. C. Sercel, M. Burian, H. Andrusiv, M. I. Bodnarchuk, T. Stoferle, R. F. Mahrt, D. Naumenko, H. Amenitsch, G. Raino, M. V. Kovalenko, ACS Cent. Sci. 2021, 7, 135–144.
- 16M. Yang, P. Moroz, E. Miller, D. Porotnikov, J. Cassidy, C. Ellison, X. Medvedeva, A. Klinkova, M. Zamkov, ACS Photonics 2019, 7, 154–164.
- 17M. Yamauchi, S. Masuo, Chem. Eur. J. 2020, 26, 7176–7184.
- 18J. Sharma, Y. Ke, C. Lin, R. Chhabra, Q. Wang, J. Nangreave, Y. Liu, H. Yan, Angew. Chem. Int. Ed. 2008, 47, 5157–5159.
- 19Y. J. Kim, C. H. Cho, K. Paek, M. Jo, M. K. Park, N. E. Lee, Y. J. Kim, B. J. Kim, E. Lee, J. Am. Chem. Soc. 2014, 136, 2767–2774.
- 20B. Ni, C. Fu, S. Pan, L. He, Z. Lin, J. Peng, Chem. Mater. 2022, 34, 847–853.
- 21M. Yamauchi, S. Masuo, Chem. Eur. J. 2019, 25, 167–172.
- 22N. Kubo, M. Yamauchi, S. Yamamoto, S. Masuo, Bull. Chem. Soc. Jpn. 2021, 94, 1799–1803.
- 23M. Yamauchi, S. Yamamoto, S. Masuo, Angew. Chem. Int. Ed. 2021, 60, 6473–6479.
- 24K. Enomoto, D. Inoue, Y. J. Pu, Adv. Funct. Mater. 2019, 29, 1905175.
- 25J. Jasieniak, L. Smith, J. Van Embden, P. Mulvaney, M. Califano, J. Phys. Chem. C 2009, 113, 19468–19474.
- 26I. Helmers, B. Shen, K. K. Kartha, R. Q. Albuquerque, M. Lee, G. Fernandez, Angew. Chem. Int. Ed. 2020, 59, 5675–5682.
- 27M. Yamauchi, Y. Fujiwara, S. Masuo, ACS Omega 2020, 5, 14370–14375.
- 28S. Lee, M. J. Choi, G. Sharma, M. Biondi, B. Chen, S. W. Baek, A. M. Najarian, M. Vafaie, J. Wicks, L. K. Sagar, S. Hoogland, F. P. G. de Arquer, O. Voznyy, E. H. Sargent, Nat. Commun. 2020, 11, 4814.
- 29S. Huo, P. Duan, T. Jiao, Q. Peng, M. Liu, Angew. Chem. Int. Ed. 2017, 56, 12174–12178.
- 30M. Zhou, Y. Sang, X. Jin, S. Chen, J. Guo, P. Duan, M. Liu, ACS Nano 2021, 15, 2753–2761.
- 31S. Chatterjee, B. Kuppan, U. Maitra, Dalton Trans. 2018, 47, 2522–2530.
- 32Y. Yang, J. T. Lee, T. Liyanage, R. Sardar, J. Am. Chem. Soc. 2019, 141, 1526–1536.
- 33J. B. Hoffman, R. Alam, P. V. Kamat, ACS Energy Lett. 2017, 2, 391–396.
- 34D. A. Hines, P. V. Kamat, ACS Appl. Mater. Interfaces 2014, 6, 3041–3057.
- 35D. Kim, T. Lee, Y.-S. Lee, T. Watanabe, Curr. Appl. Phys. 2018, 18, S14–S20.
- 36T. Franzl, T. A. Klar, S. Schietinger, A. L. Rogach, J. Feldmann, Nano Lett. 2004, 4, 1599–1603.
- 37S. A. Crooker, J. A. Hollingsworth, S. Tretiak, V. I. Klimov, Phys. Rev. Lett. 2002, 89, 186802.
- 38C. Pu, H. Qin, Y. Gao, J. Zhou, P. Wang, X. Peng, J. Am. Chem. Soc. 2017, 139, 3302–3311.
- 39B. G. Jeong, Y. S. Park, J. H. Chang, I. Cho, J. K. Kim, H. Kim, K. Char, J. Cho, V. I. Klimov, P. Park, D. C. Lee, W. K. Bae, ACS Nano 2016, 10, 9297–9305.
- 40G. Beane, K. Boldt, N. Kirkwood, P. Mulvaney, J. Phys. Chem. C 2014, 118, 18079–18086.
- 41M. J. Bowers, 2nd, J. R. McBride, S. J. Rosenthal, J. Am. Chem. Soc. 2005, 127, 15378–15379.
- 42X. H. Jin, M. B. Price, J. R. Finnegan, C. E. Boott, J. M. Richter, A. Rao, S. M. Menke, R. H. Friend, G. R. Whittell, I. Manners, Science 2018, 360, 897–900.
- 43A. T. Haedler, K. Kreger, A. Issac, B. Wittmann, M. Kivala, N. Hammer, J. Kohler, H. W. Schmidt, R. Hildner, Nature 2015, 523, 196–199.
- 44J. R. Caram, S. Doria, D. M. Eisele, F. S. Freyria, T. S. Sinclair, P. Rebentrost, S. Lloyd, M. G. Bawendi, Nano Lett. 2016, 16, 6808–6815.
- 45E. R. Goldman, I. L. Medintz, J. L. Whitley, A. Hayhurst, A. R. Clapp, H. T. Uyeda, J. R. Deschamps, M. E. Lassman, H. Mattoussi, J. Am. Chem. Soc. 2005, 127, 6744–6751.
- 46R. Xie, U. Kolb, J. Li, T. Basche, A. Mews, J. Am. Chem. Soc. 2005, 127, 7480–7488.
- 47J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.