Uncovering a CF3 Effect on X-ray Absorption Energies of [Cu(CF3)4]− and Related Copper Compounds by Using Resonant Diffraction Anomalous Fine Structure (DAFS) Measurements**
Pinar Alayoglu
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
Search for more papers by this authorTieyan Chang
NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439 USA
Search for more papers by this authorConnly Yan
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
Search for more papers by this authorYu-Sheng Chen
NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439 USA
Search for more papers by this authorCorresponding Author
Neal P. Mankad
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
Search for more papers by this authorPinar Alayoglu
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
Search for more papers by this authorTieyan Chang
NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439 USA
Search for more papers by this authorConnly Yan
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
Search for more papers by this authorYu-Sheng Chen
NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439 USA
Search for more papers by this authorCorresponding Author
Neal P. Mankad
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-klcfp).
Abstract
Understanding the electronic structures of high-valent metal complexes aids the advancement of metal-catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4]− (1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of 1 by X-ray spectroscopies have led previous authors to contradictory conclusions, motivating the re-examination of its X-ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including 1, here it is shown that there is a systematic trifluoromethyl effect on X-ray absorption that blue shifts the resonant Cu K-edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like 1 and formally Cu(I) complexes like (Ph3P)3CuCF3 (3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that 1 is best described as containing a Cu(I) ion with dn count approaching 10.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313744-sup-0001-bpyCuCF3_3.cif514.2 KB | Supporting Information |
ange202313744-sup-0001-CuBr4_m.cif624.8 KB | Supporting Information |
ange202313744-sup-0001-CuCF3_4.cif7.5 MB | Supporting Information |
ange202313744-sup-0001-misc_information.pdf1,011.4 KB | Supporting Information |
ange202313744-sup-0001-p3cucf3_m.cif9.8 MB | Supporting Information |
ange202313744-sup-0001-phenpcucf3_m_(1).cif2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886.
- 2D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308–319.
- 3B. Chen, D. A. Vicic in Organometallic Fluorine Chemistry (Eds.: T. Braun, R. P. Hughes), Springer International Publishing, Cham, 2015, pp. 113–141.
- 4O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475–4521.
- 5X. Li, X. Shi, X. Li, D. Shi, Beilstein J. Org. Chem. 2019, 15, 2213–2270.
- 6D. Mandal, S. Maji, T. Pal, S. Kumar Sinha, D. Maiti, Chem. Commun. 2022, 58, 10442–10468.
- 7J. R. Bour, N. M. Camasso, E. A. Meucci, J. W. Kampf, A. J. Canty, M. S. Sanford, J. Am. Chem. Soc. 2016, 138, 16105–16111.
- 8E. A. Meucci, S. N. Nguyen, N. M. Camasso, E. Chong, A. Ariafard, A. J. Canty, M. S. Sanford, J. Am. Chem. Soc. 2019, 141, 12872–12879.
- 9V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128, 12644–12645.
- 10V. I. Bakhmutov, F. Bozoglian, K. Gómez, G. González, V. V. Grushin, S. A. Macgregor, E. Martin, F. M. Miloserdov, M. A. Novikov, J. A. Panetier, L. V. Romashov, Organometallics 2012, 31, 1315–1328.
- 11N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2010, 132, 2878–2879.
- 12M. S. Winston, W. J. Wolf, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 7777–7782.
- 13H. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig, Angew. Chem. Int. Ed. 2011, 50, 3793–3798.
- 14T. D. Senecal, A. T. Parsons, S. L. Buchwald, J. Org. Chem. 2011, 76, 1174–1176.
- 15G. G. Dubinina, H. Furutachi, D. A. Vicic, J. Am. Chem. Soc. 2008, 130, 8600–8601.
- 16T. Liu, Q. Shen, Org. Lett. 2011, 13, 2342–2345.
- 17M. Oishi, H. Kondo, H. Amii, Chem. Commun. 2009, 1909.
- 18T. Knauber, F. Arikan, G.-V. Röschenthaler, L. J. Gooßen, Chem. Eur. J. 2011, 17, 2689–2697.
- 19C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Angew. Chem. Int. Ed. 2011, 50, 1896–1900.
- 20J.-J. Dai, C. Fang, B. Xiao, J. Yi, J. Xu, Z.-J. Liu, X. Lu, L. Liu, Y. Fu, J. Am. Chem. Soc. 2013, 135, 8436–8439.
- 21X. Xu, H. Chen, J. He, H. Xu, Chin. J. Chem. 2017, 35, 1665–1668.
- 22M. Paeth, W. Carson, J.-H. Luo, D. Tierney, Z. Cao, M.-J. Cheng, W. Liu, Chem. Eur. J. 2018, 24, 11559–11563.
- 23N. Nebra, V. V. Grushin, J. Am. Chem. Soc. 2014, 136, 16998–17001.
- 24S. Guo, D. I. AbuSalim, S. P. Cook, J. Am. Chem. Soc. 2018, 140, 12378–12382.
- 25L.-J. Cheng, N. P. Mankad, Chem. Soc. Rev. 2020, 49, 8036–8064.
- 26I. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337–2364.
- 27A. Hossain, A. Bhattacharyya, O. Reiser, Science 2019, 364, eaav9713.
- 28M. A. Willert-Porada, D. J. Burton, N. C. Baenziger, J. Chem. Soc. Chem. Commun. 1989, 1633–1634.
- 29S.-L. Zhang, W.-F. Bie, RSC Adv. 2016, 6, 70902–70906.
- 30S.-L. Zhang, W.-F. Bie, Dalton Trans. 2016, 45, 17588–17592.
- 31S.-L. Zhang, C. Xiao, H.-X. Wan, Dalton Trans. 2018, 47, 4779–4784.
- 32X. Tan, Z. Liu, H. Shen, P. Zhang, Z. Zhang, C. Li, J. Am. Chem. Soc. 2017, 139, 12430–12433.
- 33Y. Luo, Y. Li, J. Wu, X.-S. Xue, J. F. Hartwig, Q. Shen, Science 2023, 381, 1072–1079.
- 34M. Paeth, S. B. Tyndall, L.-Y. Chen, J.-C. Hong, W. P. Carson, X. Liu, X. Sun, J. Liu, K. Yang, E. M. Hale, D. L. Tierney, B. Liu, Z. Cao, M.-J. Cheng, W. A. Goddard, W. Liu, J. Am. Chem. Soc. 2019, 141, 3153–3159.
- 35S. Liu, H. Liu, S. Liu, Z. Lu, C. Lu, X. Leng, Y. Lan, Q. Shen, J. Am. Chem. Soc. 2020, 142, 9785–9791.
- 36D. Naumann, T. Roy, K.-F. Tebbe, W. Crump, Angew. Chem. Int. Ed. Engl. 1993, 32, 1482–1483.
- 37A. M. Romine, N. Nebra, A. I. Konovalov, E. Martin, J. Benet-Buchholz, V. V. Grushin, Angew. Chem. Int. Ed. 2015, 54, 2745–2749.
- 38A. J. Hickman, M. S. Sanford, Nature 2012, 484, 177–185.
- 39U. Preiss, I. Krossing, Z. Anorg. Allg. Chem. 2007, 633, 1639–1644.
- 40J. P. Snyder, Angew. Chem. Int. Ed. Engl. 1995, 34, 80–81.
- 41M. Kaupp, H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 1995, 34, 986–986.
- 42J. P. Snyder, Angew. Chem. Int. Ed. Engl. 1995, 34, 986–987.
- 43G. Aullón, S. Alvarez, Theor. Chem. Acc. 2009, 123, 67–73.
- 44R. C. Walroth, J. T. Lukens, S. N. MacMillan, K. D. Finkelstein, K. M. Lancaster, J. Am. Chem. Soc. 2016, 138, 1922–1931.
- 45C. Gao, G. Macetti, J. Overgaard, Inorg. Chem. 2019, 58, 2133–2139.
- 46S. Alvarez, R. Hoffmann, C. Mealli, Chem. Eur. J. 2009, 15, 8358–8373.
- 47R. Hoffmann, S. Alvarez, C. Mealli, A. Falceto, T. J. Cahill, T. Zeng, G. Manca, Chem. Rev. 2016, 116, 8173–8192.
- 48I. M. DiMucci, J. T. Lukens, S. Chatterjee, K. M. Carsch, C. J. Titus, S. J. Lee, D. Nordlund, T. A. Betley, S. N. MacMillan, K. M. Lancaster, J. Am. Chem. Soc. 2019, 141, 18508–18520.
- 49B. L. Geoghegan, Y. Liu, S. Peredkov, S. Dechert, F. Meyer, S. DeBeer, G. E. Cutsail, J. Am. Chem. Soc. 2022, 144, 2520–2534.
- 50I. M. DiMucci, C. J. Titus, D. Nordlund, J. R. Bour, E. Chong, D. P. Grigas, C.-H. Hu, M. D. Kosobokov, C. D. Martin, L. M. Mirica, N. Nebra, D. A. Vicic, L. L. Yorks, S. Yruegas, S. N. MacMillan, J. Shearer, K. M. Lancaster, Chem. Sci. 2023, 14, 6915–6929.
- 51G. Wu, Y. Zhang, L. Ribaud, P. Coppens, C. Wilson, B. B. Iversen, F. K. Larsen, Inorg. Chem. 1998, 37, 6078–6083.
- 52S. N. MacMillan, K. M. Lancaster, ACS Catal. 2017, 7, 1776–1791.
- 53P. Alayoglu, T. Chang, M. V. Lorenzo Ocampo, L. J. Murray, Y.-S. Chen, N. P. Mankad, Inorg. Chem. 2023, 62, 15267–15276.
- 54A. K. Bartholomew, J. J. Teesdale, R. H. Sánchez, B. J. Malbrecht, C. E. Juda, G. Ménard, W. Bu, D. A. Iovan, A. A. Mikhailine, S. L. Zheng, R. Sarangi, S. Y. G. Wang, Y. S. Chen, T. A. Betley, Proc. Natl. Acad. Sci. USA 2019, 116, 15836–15841.
- 55A. K. Bartholomew, R. A. Musgrave, K. J. Anderton, C. E. Juda, Y. Dong, W. Bu, S.-Y. Wang, Y.-S. Chen, T. A. Betley, Chem. Sci. 2021, 12, 15739–15749.
- 56R. Hernández Sánchez, A. M. Champsaur, B. Choi, S. G. Wang, W. Bu, X. Roy, Y. S. Chen, M. L. Steigerwald, C. Nuckolls, D. W. Paley, Angew. Chem. Int. Ed. 2018, 57, 13815–13820.
- 57O. Einsle, S. L. A. Andrade, H. Dobbek, J. Meyer, D. C. Rees, J. Am. Chem. Soc. 2007, 129, 2210–2211.
- 58T. Spatzal, J. Schlesier, E.-M. Burger, D. Sippel, L. Zhang, S. L. A. Andrade, D. C. Rees, O. Einsle, Nat. Commun. 2016, 7, 10902.
- 59H. Han, J. C. Carozza, Z. Zhou, Y. Zhang, Z. Wei, A. M. Abakumov, A. S. Filatov, Y. S. Chen, D. J. Santalucia, J. F. Berry, E. V. Dikarev, J. Am. Chem. Soc. 2020, 142, 12767–12776.
- 60C. H. Arnett, J. T. Kaiser, T. Agapie, Inorg. Chem. 2019, 58, 15971–15982.
- 61Y. Gao, A. Frost-Jensen, M. R. Pressprich, P. Coppens, A. Marquez, M. Dupuis, J. Am. Chem. Soc. 1992, 114, 9214–9215.
- 62L. Zhang, J. T. Kaiser, G. Meloni, K. Y. Yang, T. Spatzal, S. L. A. Andrade, O. Einsle, J. B. Howard, D. C. Rees, Angew. Chem. Int. Ed. 2013, 52, 10529–10532.
- 63Deposition numbers 2283318, 2283319, 2283320, 2283321, 2283426 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 64R. D. Willett, F. H. Jardine, I. Rouse, R. J. Wong, C. P. Landee, M. Numata, Phys. Rev. B 1981, 24, 5372–5381.
- 65O. A. Tomashenko, E. C. Escudero-Adán, M. Martínez Belmonte, V. V. Grushin, Angew. Chem. Int. Ed. 2011, 50, 7655–7659.
- 66K. Folting, J. Huffman, W. Mahoney, Acta Crystallogr. Sect. C 1987, 43, 1490–1492.
- 67T. F. Carlson, J. P. Fackler Jnr, R. A. Kresinski, Acta Crystallogr. Sect. C 1996, 52, 1117–1119.
- 68L. S. Kau, D. J. Spira-Solomon, J. E. Penner-Hahn, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1987, 109, 6433–6442.
- 69J. Rudolph, C. R. Jacob, Inorg. Chem. 2018, 57, 10591–10607.
- 70F. F. Awwadi, R. D. Willett, S. F. Haddad, B. Twamley, Cryst. Growth Des. 2006, 6, 1833–1838.
- 71A. A. Gewirth, S. L. Cohen, H. J. Schugar, E. I. Solomon, Inorg. Chem. 1987, 26, 1133–1146.
- 72S. J. George, M. D. Lowery, E. I. Solomon, S. P. Cramer, J. Am. Chem. Soc. 1993, 115, 2968–2969.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.