Fast Antioxidation Kinetics of Glutathione Intracellularly Monitored by a Dual-Wire Nanosensor
Yu-Ting Jiao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYi-Ran Kang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorMing-Yong Wen
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorHui-Qian Wu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin-Wei Zhang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei-Hua Huang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYu-Ting Jiao
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYi-Ran Kang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorMing-Yong Wen
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorHui-Qian Wu
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xin-Wei Zhang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei-Hua Huang
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorAbstract
The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313612-sup-0001-misc_information.pdf533.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. M. Holmström, T. Finkel, Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421;
- 1bM. L. Circu, T. Y. Aw, Free Radical Biol. Med. 2010, 48, 749–762;
- 1cC. C. Winterbourn, Nat. Chem. Biol. 2008, 4, 278–286.
- 2
- 2aE. Panieri, M. M. Santoro, Cell Death Dis. 2016, 7, e2253;
- 2bJ. Kim, J. Kim, J. Bae, Exp. Mol. Med. 2016, 48, e269;
- 2cT. Finkel, N. J. Holbrook, Nature 2000, 408, 239–247;
- 2dV. Purohit, D. M. Simeone, C. A. Lyssiotis, Cancers 2019, 11, 955;
- 2eU. Raaz, R. Toh, L. Maegdefessel, M. Adam, F. Nakagami, F. C. Emrich, J. M. Spin, P. S. Tsao, Antioxid. Redox Signaling 2014, 20, 914–928;
- 2fZ. Wu, M. M. Liu, Z. C. Liu, Y. Tian, J. Am. Chem. Soc. 2020, 142, 7532–7541.
- 3
- 3aI. S. Harris, G. M. DeNicola, Trends Cell Biol. 2020, 30, 440–451;
- 3bN. Singh, G. R. Sherin, G. Mugesh, Angew. Chem. Int. Ed. 2023, 62, e202301232;
- 3cR. Liu, Y. Bian, L. Liu, L. Liu, X. Liu, S. Ma, Int. J. Mol. Med. 2022, 49, 65.
- 4
- 4aC. F. Ng, F. Q. Schafer, G. R. Buettner, V. G. Rodgers, Free Radical Res. 2007, 41, 1201–1211;
- 4bJ. Yin, Y. Kwon, D. Kim, D. Lee, G. Kim, Y. Hu, J. H. Ryu, J. Yoon, Nat. Protoc. 2015, 10, 1742–1754;
- 4cY. Xiong, C. Xiao, Z. Li, X. Yang, Chem. Soc. Rev. 2021, 50, 6013–6041;
- 4dR. Franco, J. A. Cidlowski, Cell Death Differ. 2009, 16, 1303–1314.
- 5
- 5aM. Fratelli, L. O. Goodwin, U. A. Ørom, S. Lombardi, R. Tonelli, M. Mengozzi, P. Ghezzi, C. A. Dinarello, Proc. Natl. Acad. Sci. USA 2005, 102, 13998–14003;
- 5bY. Ho, J. Magnenat, R. T. Bronson, J. Cao, M. Gargano, M. Sugawara, C. D. Funk, J. Biol. Chem. 1997, 272, 16644–16651;
- 5cW. H. Park, Int. J. Oncol. 2016, 49, 785–792;
- 5dC. Li, S. Li, J. Zhao, M. Z. Sun, W. W. Wang, M. R. Lu, A. H. Qu, C. L. Hao, C. Chen, C. L. Xu, H. Kuang, L. G. Xu, J. Am. Chem. Soc. 2022, 144, 1580–1588.
- 6
- 6aX. T. Zheng, W. H. Hu, H. X. Wang, H. B. Yang, W. Zhou, C. M. Li, Biosens. Bioelectron. 2011, 26, 4484–4490;
- 6bS. Zhang, H. C. Qin, S. W. Cheng, Y. Zhang, N. Gao, M. N. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202300083;
- 6cS. Emmert, G. Quargnali, S. Thallmair, P. Rivera-Fuentes, Nat. Chem. 2023, 15, 1415–1421;
- 6dY. J. Qian, L. M. Zhang, Y. Tian, Anal. Chem. 2022, 94, 1447–1455.
- 7
- 7aP. Sun, F. O. Laforge, T. P. Abeyweera, S. A. Rotenberg, J. Carpino, M. V. Mirkin, Proc. Natl. Acad. Sci. USA 2008, 105, 443–448;
- 7bS. M. Oja, D. A. Robinson, N. J. Vitti, M. A. Edwards, Y. Liu, H. S. White, B. Zhang, J. Am. Chem. Soc. 2017, 139, 708–718;
- 7cS. M. Lu, Y. Y. Peng, Y. L. Ying, Y. T. Long, Anal. Chem. 2020, 92, 5621–5644;
- 7dF. Wu, P. Yu, L. Q. Mao, Angew. Chem. Int. Ed. 2023, 62, e202208872.
- 8
- 8aY. Li, K. K. Hu, Y. Yu, S. A. Rotenberg, C. Amatore, M. V. Mirkin, J. Am. Chem. Soc. 2017, 139, 13055–13062;
- 8bP. Hu, Y. Zhang, D. D. Wang, G. H. Qi, Y. D. Jin, Anal. Chem. 2021, 93, 4240–4245;
- 8cX. W. Zhang, Q. F. Qiu, H. Jiang, F. L. Zhang, Y. L. Liu, C. Amatore, W. H. Huang, Angew. Chem. Int. Ed. 2017, 56, 12997–13000;
- 8dH. Wang, H. M. Hua, H. R. Tang, Y. X. Li, Anal. Chim. Acta 2021, 1166, 338579;
- 8eW. T. Wu, X. Chen, Y. T. Jiao, W. T. Fan, Y. L. Liu, W. H. Huang, Angew. Chem. Int. Ed. 2022, 61, e202115820;
- 8fY. L. Liu, S. Y. Yu, R. B. An, Y. X. Miao, D. C. Jiang, D. J. Ye, J. J. Xu, W. W. Zhao, ACS Nano 2023, 17, 17468–17475.
- 9Y. T. Jiao, H. Jiang, W. T. Wu, Y. T. Qi, M. Y. Wen, X. K. Yang, Y. R. Kang, X. W. Zhang, C. Amatore, W. H. Huang, Biosens. Bioelectron. 2023, 222, 114928.
- 10Y. T. Qi, H. Jiang, W. T. Wu, F. L. Zhang, S. Y. Tian, W. T. Fan, Y. L. Liu, C. Amatore, W. H. Huang, J. Am. Chem. Soc. 2022, 144, 9723–9733.
- 11
- 11aR. de Cássia Silva Luz, F. S. Damos, P. G. Gandra, D. V. de Macedo, A. A. Tanaka, L. T. Kubota, Anal. Bioanal. Chem. 2007, 387, 1891–1897;
- 11bK. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba, Y. Urano, Nat. Chem. 2017, 9, 279–286.
- 12
- 12aX. Jiang, J. Chen, A. Bajić, C. Zhang, X. Song, S. L. Carroll, Z. Cai, M. Tang, M. Xue, N. Cheng, C. P. Schaaf, F. Li, K. R. MacKenzie, A. C. M. Ferreon, F. Xia, M. C. Wang, M. Maletić-Savatić, J. Wang, Nat. Commun. 2017, 8, 16087;
- 12bH. Jiang, X. W. Zhang, Q. L. Liao, W. T. Wu, Y. L. Liu, W. H. Huang, Small 2019, 15, 1901787.
- 13
- 13aJ. Song, C. H. Xu, S. Z. Huang, W. Lei, Y. F. Ruan, H. J. Lu, W. Zhao, J. J. Xu, H. Y. Chen, Angew. Chem. Int. Ed. 2018, 57, 13226–13230;
- 13bE. M. Griner, M. G. Kazanietz, Nat. Rev. Cancer 2007, 7, 281–294.
- 14
- 14aC. Espinosa-Diez, V. Miguel, D. Mennerich, T. Kietzmann, P. Sánchez-Pérez, S. Cadenas, S. Lamas, Redox. Biol. 2015, 6, 183–197;
- 14bJ. D. Zheng, Y. X. Wu, D. Xing, T. Zhang, Nano Res. 2019, 12, 931–938;
- 14cK. H. Xu, M. M. Qiang, W. Gao, R. X. Su, N. Li, Y. Gao, Y. X. Xie, F. P. Kong, B. Tang, Chem. Sci. 2013, 4, 1079–1086.
- 15
- 15aZ. X. Liu, X. Zhou, Y. Miao, Y. Hu, N. Kwon, X. Wu, J. Yoon, Angew. Chem. Int. Ed. 2017, 56, 5812–5816;
- 15bL. Kennedy, J. K. Sandhu, M. Harper, M. Cuperlovic-Culf, Biomol. Eng. 2020, 10, 1429;
- 15cO. Epp, R. Ladenstein, A. Wendel, Eur. J. Biochem. 1983, 133, 51–69.
- 16
- 16aH. Wu, L. Chen, F. Zhu, X. Han, L. Sun, K. Chen, Toxin Rev. 2019, 11, 731;
- 16bC. Liang, K. Yi, X. Zhou, X. Li, C. Zhong, H. Cao, C. Xie, J. Zhu, Phytother. Res. 2023, 37, 2995–3008.
- 17
- 17aJ. R. Gledhill, M. G. Montgomery, A. G. Leslie, J. E. Walker, Proc. Natl. Acad. Sci. USA 2007, 104, 13632–13637;
- 17bX. Fu, M. Li, C. L. Tang, Z. Z. Huang, M. Najafi, Apoptosis 2021, 26, 561–573.
- 18
- 18aY. Lu, Y. Kou, Y. Gao, P. Yang, S. Liu, F. Zhang, M. Li, Oral Dis. 2023, 29, 615–627;
- 18bV. Gouazé, N. Andrieu-Abadie, O. Cuvillier, S. Malagarie-Cazenave, M. Frisach, M. Mirault, T. Levade, J. Biol. Chem. 2002, 277, 42867–42874;
- 18cS. Vibet, C. Goupille, P. Bougnoux, J. Steghens, J. Goré, K. Mahéo, Free Radical Biol. Med. 2008, 44, 1483–1491.
- 19
- 19aS. I. Zandalinas, R. Mittler, Free Radical Biol. Med. 2018, 122, 21–27;
- 19bK. Liu, Z. Zhang, R. Liu, J. P. Li, D. Jiang, R. Pan, Angew. Chem. Int. Ed. 2023, 62, e202303053.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.