Understanding the Role of Fluorine Groups in Passivating Defects for Perovskite Solar Cells
Corresponding Author
Xiaoqing Jiang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorGuangyue Yang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorBingqian Zhang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Shandong Energy Institute, Qingdao, 266101 China
Qingdao New Energy Shandong Laboratory, Qingdao, 266101 China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorLinqin Wang
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024 Zhejiang, China
Search for more papers by this authorYanfeng Yin
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorFengshan Zhang
Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying, 257335 China
Search for more papers by this authorShitao Yu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorShiwei Liu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorHongkai Bu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Zhongmin Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorLicheng Sun
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024 Zhejiang, China
Search for more papers by this authorCorresponding Author
Shuping Pang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Shandong Energy Institute, Qingdao, 266101 China
Qingdao New Energy Shandong Laboratory, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Xin Guo
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Xiaoqing Jiang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorGuangyue Yang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorBingqian Zhang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Shandong Energy Institute, Qingdao, 266101 China
Qingdao New Energy Shandong Laboratory, Qingdao, 266101 China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorLinqin Wang
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024 Zhejiang, China
Search for more papers by this authorYanfeng Yin
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorFengshan Zhang
Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying, 257335 China
Search for more papers by this authorShitao Yu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorShiwei Liu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorHongkai Bu
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Zhongmin Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorLicheng Sun
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024 Zhejiang, China
Search for more papers by this authorCorresponding Author
Shuping Pang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Shandong Energy Institute, Qingdao, 266101 China
Qingdao New Energy Shandong Laboratory, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Xin Guo
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorAbstract
Introducing fluorine (F) groups into a passivator plays an important role in enhancing the defect passivation effect for the perovskite film, which is usually attributed to the direct interaction of F and defect states. However, the interaction between electronegative F and electron-rich passivation groups in the same molecule, which may influence the passivation effect, is ignored. We herein report that such interactions can vary the electron cloud distribution around the passivation groups and thus changing their coordination with defect sites. By comparing two fluorinated molecules, heptafluorobutylamine (HFBM) and heptafluorobutyric acid (HFBA), we find that the F/−NH2 interaction in HFBM is stronger than the F/−COOH one in HFBA, inducing weaker passivation ability of HFBM than HFBA. Accordingly, HFBA-based perovskite solar cells (PSCs) provide an efficiency of 24.70 % with excellent long-term stability. Moreover, the efficiency of a large-area perovskite module (14.0 cm2) based on HFBA reaches 21.13 %. Our work offers an insight into understanding an unaware role of the F group in impacting the passivation effect for the perovskite film.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313133-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 12023, https://www.nrel.gov/pv/cell-efficiency.html.
- 2O. Inganäs, Adv. Mater. 2018, 30, 1800388.
- 3Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F. H. Isikgor, D.-J. Xue, B. Chen, H. Chen, B. Bahrami, A. H. Chowdhury, A. Johnston, S.-W. Baek, Z. Huang, M. Wei, Y. Dong, J. Troughton, R. Jalmood, A. J. Mirabelli, T. G. Allen, E. Van Kerschaver, M. I. Saidaminov, D. Baran, Q. Qiao, K. Zhu, S. De Wolf, E. H. Sargent, Science 2020, 367, 1135–1140.
- 4H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444–450.
- 5Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen, P. Gao, Chem. Soc. Rev. 2023, 52, 163.
- 6T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, J. Mater. Chem. A 2017, 5, 12602.
- 7F. Zhang, K. Zhu, Adv. Energy Mater. 2020, 10, 1902579.
- 8Q. Zhang, M. A. Kelly, N. Bauer, W. You, Acc. Chem. Res. 2017, 50, 2401–2409.
- 9M. L. Tang, Z. Bao, Chem. Mater. 2011, 23, 446–455.
- 10H. Yao, J. Wang, Y. Xu, S. Zhang, J. Hou, Acc. Chem. Res. 2020, 53, 822–832.
- 11S. C. Price, A. C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 2011, 133, 4625–4631.
- 12T. L. Nguyen, H. Choi, S.-J. Ko, M. A. Uddin, B. Walker, S. Yum, J.-E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, H. Y. Woo, Energy Environ. Sci. 2014, 7, 3040–3051.
- 13F. Babudri, G. M. Farinola, F. Naso, R. Ragni, Chem. Commun. 2007, 1003–1022.
- 14J. Zhou, H. Li, L. Tan, Y. Liu, J. Yang, R. Hua, C. Yi, Angew. Chem. Int. Ed. 2023, 62, e202300314.
- 15C. Liu, S. Liu, Y. Wang, Y. Chu, K. Yang, X. Wang, C. Gao, Q. Wang, J. Du, S. Li, Y. Hu, Y. Rong, L. Guo, A. Mei, H. Han, Adv. Funct. Mater. 2021, 31, 2010603.
- 16S. Zhao, J. Xie, G. Cheng, Y. Xiang, H. Zhu, W. Guo, H. Wang, M. Qin, X. Lu, J. Qu, J. Wang, J. Xu, K. Yan, Small 2018, 14, 1803350.
- 17J. Yang, C. Liu, C. Cai, X. Hu, Z. Huang, X. Duan, X. Meng, Z. Yuan, L. Tan, Y. Chen, Adv. Energy Mater. 2019, 9, 1900198.
- 18G. Sathiyan, H. Wang, C. Chen, Y. Miao, M. Zhai, M. Cheng, Dyes Pigm. 2022, 198, 110029.
- 19Z. Yang, J. Dou, S. Kou, J. Dang, Y. Ji, G. Yang, W. Wu, D. Kuang, M. Wang, Adv. Funct. Mater. 2020, 30, 1910710.
- 20S. Xiong, Z. Hou, W. Dong, D. Li, J. Yang, R. Bai, Y. Wu, D. Li, H. Wu, Z. Ma, J. Xu, X. Liu, Q. Bao, Adv. Energy Mater. 2021, 11, 2101394.
- 21N. A. N. Ouedraogo, H. Yan, C. B. Han, Y. Zhang, Small 2021, 17, 2004081.
- 22H. Zhang, W. Xiang, X. Zuo, X. Gu, S. Zhang, Y. Du, Z. Wang, Y. Liu, H. Wu, P. Wang, Q. Cui, H. Su, Q. Tian, S. Liu, Angew. Chem. Int. Ed. 2023, 62, e202216634.
- 23J. Xia, J. Luo, H. Yang, F. Zhao, Z. Wan, H. A. Malik, Y. Shi, K. Han, X. Yao, C. Jia, Adv. Funct. Mater. 2020, 30, 2001418.
- 24Y. Zhu, P. Lv, M. Hu, S. R. Raga, H. Yin, Y. Zhang, Z. An, Q. Zhu, G. Luo, W. Li, F. Huang, M. Cantu, Y. Cheng, J. Lu, Adv. Energy Mater. 2023, 13, 2203681.
- 25Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 2021, 31, 2005776.
- 26L. Liu, Y. Li, C. Zheng, Z. Liu, N. Yuan, J. Ding, D. Wang, S. Liu, Solar RRL 2022, 6, 2200284.
- 27Y. Hao, X. Wang, M. Zhu, X. Jiang, L. Wang, G. Cao, S. Pang, Z. Zhou, J. Mater. Chem. A 2022, 10, 13048.
- 28N. Li, S. Tao , Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong , X. Wang , Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen , H. Zhou, Nat. Energy 2019, 4, 408–415.
- 29L. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen, Y. Huang, F. Zhang, Q. Dong, G. Xue, D. Chen, C. Hu, S. Li, Z. Liu, Y. Shen, Q. Chen, L. Chen, Nat. Commun. 2023, 14, 2301.
- 30H. Wang, J. Du, X. Li, H. Duan, S. Yang, D. Han, J. Yang, L. Fan, F. Wang, L. Yang, Chem. Eng. J. 2022, 450, 137990.
- 31H. Zhang, K. Li, M. Sun, F. Wang, H. Wang, A. K.-Y. Jen, Adv. Energy Mater. 2021, 11, 2102281.
- 32M. Salado, M. A. Fernández, J. P. Holgado, S. Kazim, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, ChemSusChem 2017, 10, 3846–3853.
- 33A. Ali, M. J. Cha, J. H. Kang, Y. J. Park, J. H. Seo, B. Walker, Adv. Eng. Mater. 2020, 22, 2000185.
- 34Q. Hu, L. Zhao, J. Wu, K. Gao, D. Luo, Y. Jiang, Z. Zhang, C. Zhu, E. Schaible, A. Hexemer, C. Wang, Y. Liu, W. Zhang, M. Grätzel, F. Liu, T. P. Russell, R. Zhu, Q. Gong, Nat. Commun. 2017, 8, 15688.
- 35G. Li, Z. Su, L. Canil, D. Hughes, M. H. Aldamasy, J. Dagar, S. Trofimov, L. Wang, W. Zuo, J. J. Rendon, M. Byranvand, C. Wang, R. Zhu, Z. Zhang, F. Yang, G. Nasti, B. Naydenov, W. C. Tsoi, Z. Li, X. Gao, Z. Wang, Y. Jia, E. Unger, M. Saliba, M. Li, A. Abate, Science 2023, 379, 399–403.
- 36Y. Zou, P. Teng, W. Xu, G. Zheng, W. Lin, J. Yin, L. Kobera, S. Abbrent, X. Li, J. A. Steele, E. Solano, M. B. J. Roeffaers, J. Li, L. Cai, C. Kuang, I. G. Scheblykin, J. Brus, K. Zheng, Y. Yang, O. F. Mohammed, O. M. Bakr, T. Pullerits, S. Bai, B. Sun, F. Gao, Nat. Commun. 2021, 12, 4831.
- 37M. Wang, Y. Zhao, X. Jiang, Y. Yin, I. Yavuz, P. Zhu, A. Zhang, G. Han, Hy. Jung, Y. Zhou, W. Yang, J. Bian, S. Jin, J. Lee, Y. Yang, Joule 2022, 6, 1032–1048.
- 38H. S. Kim, N.-G. Park, J. Phys. Chem. Lett. 2014, 5, 2927–2934.
- 39J. Kim, B.-W. Park, J. Baek, J. S. Yun, H.-W. Kwon, J. Seidel, H. Min, S. Coelho, S. Lim, S. Huang, K. Gaus, M. A. Green, T. J. Shin, A. W. Y. Hobaillie, M. G. Kim, S. I. Seok, J. Am. Chem. Soc. 2020, 142, 6251.
- 40J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. Kim, C. S. Moon, N. J. Jeon, J. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587–593.
- 41Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao, X. Liu, D. Yu, Q. Zhao, Adv. Mater. 2018, 30, 1803095.
- 42B. Liu, H. Bi, D. He, L. Bai, W. Wang, H. Yuan, Q. Song, P. Su, Z. Zang, T. Zhou, J. Chen, ACS Energy Lett. 2021, 6, 2526–2538.
- 43S. Liu, S. Li, J. Wu, Q. Wang, Y. Ming, D. Zhang, Y. Sheng, Y. Hu, Y. Rong, A. Mei, H. Han, J. Phys. Chem. Lett. 2019, 10, 6865.
- 44C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M. M. Junda, C. Wang, C. S. Jiang, M. Al-Jassim, R. J. Ellingson, N. J. Podraza, K. Zhu, Y. Yan, Adv. Energy Mater. 2019, 9, 1803135.
- 45W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J. P. C. Baena, A. Hagfeldt, M. Gräzel, Energy Environ. Sci. 2018, 11, 151–165.
- 46R. Azmi, S. Y. Nam, S. Sinaga, Z. A. Akbar, C. Lee, S. C. Yoon, I. Jung, S. Jang, Nano Energy 2018, 44, 191–198.
- 47Y. Zong, Y. Zhou, Y. Zhang, Z. Li, L. Zhang, M. Ju, M. Chen, S. Pang, X. Zeng, N. P. Padture, Chem 2018, 4, 1404–1415.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.