Efficient and Direct Functionalization of Allylic sp3 C−H Bonds with Concomitant CO2 Reduction
Ming-Yu Qi
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Jun Xu
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorMing-Yu Qi
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yi-Jun Xu
College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116 China
Search for more papers by this authorAbstract
Solar-driven CO2 reduction integrated with C−C/C−X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C−H bonds for accessing allylic C−C products, over SiO2-supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C−C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2–5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202311731-sup-0001-misc_information.pdf6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 2019, 119, 3962–4179;
- 1bK.-Q. Lu, Y.-H. Li, F. Zhang, M.-Y. Qi, X. Chen, Z.-R. Tang, Y. M. A. Yamada, M. Anpo, M. Conte, Y.-J. Xu, Nat. Commun. 2020, 11, 5181;
- 1cH.-L. Wu, X.-B. Li, C.-H. Tung, L.-Z. Wu, Adv. Mater. 2019, 31, 1900709;
- 1dC. Han, Y.-H. Li, J.-Y. Li, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Angew. Chem. Int. Ed. 2021, 60, 7962–7970.
- 2
- 2aS. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou, I. Shih, J. Song, Z. Mi, J. Am. Chem. Soc. 2018, 140, 7869–7877;
- 2bS. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed. 2013, 52, 7372–7408.
- 3A. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 2007, 107, 1692–1744.
- 4
- 4aL. Yuan, M.-Y. Qi, Z.-R. Tang, Y.-J. Xu, Angew. Chem. Int. Ed. 2021, 60, 21150–21172;
- 4bJ. Artz, T. E. Mueller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434–504;
- 4cH. Liu, H.-L. Jiang, Chem 2019, 5, 2508–2510.
- 5M.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang, Y.-J. Xu, Chem. Rev. 2021, 121, 13051–13085.
- 6
- 6aK. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. L. Davies, Nature 2016, 533, 230–234;
- 6bZ. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437–440;
- 6cN. Hazari, P. R. Melvin, M. M. Beromi, Nat. Chem. Rev. 2017, 1, 0025.
- 7
- 7aC. Huang, J. Qiao, R.-N. Ci, X.-Z. Wang, Y. Wang, J.-H. Wang, B. Chen, C.-H. Tung, L.-Z. Wu, Chem 2021, 7, 1244–1257;
- 7bM. Yus, J. C. Gonzalez-Gomez, F. Foubelo, Chem. Rev. 2013, 113, 5595–5698;
- 7cH.-H. Zhang, J.-J. Zhao, S. Yu, J. Am. Chem. Soc. 2018, 140, 16914–16919.
- 8Q. Cheng, H.-F. Tu, C. Zheng, J.-P. Qu, G. Helmchen, S.-L. You, Chem. Rev. 2019, 119, 1855–1969.
- 9
- 9aZ. Li, C.-J. Li, J. Am. Chem. Soc. 2006, 128, 56–57;
- 9bA. Lerchen, T. Knecht, M. Koy, J. B. Ernst, K. Bergander, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2018, 57, 15248–15252;
- 9cA. J. Young, M. C. White, Angew. Chem. Int. Ed. 2011, 50, 6824–6827.
- 10
- 10aJ. D. Cuthbertson, D. W. C. MacMillan, Nature 2015, 519, 74–77;
- 10bL. Huang, M. Rueping, Angew. Chem. Int. Ed. 2018, 57, 10333–10337;
- 10cH. Tanaka, K. Sakai, A. Kawamura, K. Oisaki, M. Kanai, Chem. Commun. 2018, 54, 3215–3218;
- 10dG. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268–271;
- 10eJ. L. Schwarz, F. Schaefers, A. Tlahuext-Aca, L. Lueckemeier, F. Glorius, J. Am. Chem. Soc. 2018, 140, 12705–12709.
- 11S. Mukherjee, B. Maji, A. Tlahuext-Aca, F. Glorius, J. Am. Chem. Soc. 2016, 138, 16200–16203.
- 12C. Huang, R.-N. Ci, J. Qiao, X.-Z. Wang, K. Feng, B. Chen, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2021, 60, 11779–11783.
- 13
- 13aX. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 2018, 1, 385–397;
- 13bY. Jiang, R. Lopez-Arteaga, E. A. Weiss, J. Am. Chem. Soc. 2022, 144, 3782–3786.
- 14M.-Y. Qi, Y.-H. Li, M. Anpo, Z.-R. Tang, Y.-J. Xu, ACS Catal. 2020, 10, 14327–14335.
- 15
- 15aW. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, S. J. Pennycook, Adv. Mater. 2021, 33, 2003846;
- 15bL. Lin, Q. Yu, M. Peng, A. Li, S. Yao, S. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X. Han, Y.-W. Li, X.-D. Wen, W. Zhou, D. Ma, J. Am. Chem. Soc. 2021, 143, 309–317.
- 16G. Qian, W. Lyu, X. Zhao, J. Zhou, R. Fang, F. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202210576.
- 17T. Zhang, X. Han, H. Yang, A. Han, E. Hu, Y. Li, X.-q. Yang, L. Wang, J. Liu, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 12055–12061.
- 18
- 18aN. Zhang, C. Han, Y.-J. Xu, J. J. Foley, D. Zhang, J. Codrington, S. K. Gray, Y. Sun, Nat. Photonics 2016, 10, 473–482;
- 18bM.-Y. Qi, M. Conte, Z.-R. Tang, Y.-J. Xu, ACS Nano 2022, 16, 17444–17453.
- 19Y.-H. Chen, M.-Y. Qi, Y.-H. Li, Z.-R. Tang, T. Wang, J. Gong, Y.-J. Xu, Cell Rep. Phys. Sci. 2021, 2, 100371.
- 20M. F. Kuehnel, K. L. Orchard, K. E. Dalle, E. Reisner, J. Am. Chem. Soc. 2017, 139, 7217–7223.
- 21
- 21aJ. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi, C. Gao, J. Zhu, Z. Li, H. Xu, Y. Xiong, Angew. Chem. Int. Ed. 2018, 57, 16447–16451;
- 21bP. K. Santra, P. V. Kamat, J. Am. Chem. Soc. 2012, 134, 2508–2511.
- 22
- 22aY. Wang, X. Shang, J. Shen, Z. Zhang, D. Wang, J. Lin, J. C. S. Wu, X. Fu, X. Wang, C. Li, Nat. Commun. 2020, 11, 3043;
- 22bX. Yue, L. Cheng, F. Li, J. Fan, Q. Xiang, Angew. Chem. Int. Ed. 2022, 61, e202208414.
- 23W. Shangguan, Q. Liu, Y. Wang, N. Sun, Y. Liu, R. Zhao, Y. Li, C. Wang, J. Zhao, Nat. Commun. 2022, 13, 3894.
- 24Z.-K. Xin, M.-Y. Huang, Y. Wang, Y.-J. Gao, Q. Guo, X.-B. Li, C.-H. Tung, L.-Z. Wu, Angew. Chem. Int. Ed. 2022, 61, e202207222.
- 25Y. Yu, X. a. Dong, P. Chen, Q. Geng, H. Wang, J. Li, Y. Zhou, F. Dong, ACS Nano 2021, 15, 14453–14464.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.