Durable Multiblock Poly(biphenyl alkylene) Anion Exchange Membranes with Microphase Separation for Hydrogen Energy Conversion
Yichang Ma
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chuan Hu
Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorGuiqin Yi
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorZhangtang Jiang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Xiangyu Su
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorProf. Qinglin Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Ju Yeon Lee
Hydrogen and Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
Search for more papers by this authorDr. So Young Lee
Hydrogen and Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Young Moo Lee
Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Qiugen Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorYichang Ma
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Chuan Hu
Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorGuiqin Yi
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorZhangtang Jiang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Xiangyu Su
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorProf. Qinglin Liu
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Ju Yeon Lee
Hydrogen and Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
Search for more papers by this authorDr. So Young Lee
Hydrogen and Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Young Moo Lee
Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Qiugen Zhang
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102 China
Search for more papers by this authorAbstract
Anion exchange membrane fuel cells (AEMFCs) and water electrolysis (AEMWE) show great application potential in the field of hydrogen energy conversion technology. However, scalable anion exchange membranes (AEMs) with desirable properties are still lacking, which greatly hampers the commercialization of this technology. Herein, we propose a series of novel multiblock AEMs based on ether-free poly(biphenyl ammonium-b-biphenyl phenyl)s (PBPA-b-BPPs) that are suitable for use in high performance AEMFC and AEMWE systems because of their well-formed microphase separation structures. The developed AEMs achieved outstanding OH− conductivity (162.2 mS cm−1 at 80 °C) with a low swelling ratio, good alkaline stability, and excellent mechanical durability (tensile strength >31 MPa and elongation at break >147 % after treatment in 2 M NaOH at 80 °C for 3750 h). A PBPA-b-BPP-based AEMFC demonstrated a remarkable peak power density of 2.41 W cm−2 and in situ durability for 330 h under 0.6 A cm−2 at 70 °C. An AEMWE device showed a promising performance (6.25 A cm−2 at 2 V, 80 °C) and outstanding in situ durability for 3250 h with a low voltage decay rate (<28 μV h−1). The newly developed PBPA-b-BPP AEMs thus show great application prospects for energy conversion devices.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202311509-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 2022, 51, 9620–9693.
- 2
- 2aM. Hren, M. Božič, D. Fakin, K. S. Kleinschek, S. Gorgieva, Sustain. Energy Fuels 2021, 5, 604–637;
- 2bM. S. Cha, J. E. Park, S. Kim, S.-H. Han, S.-H. Shin, S. H. Yang, T.-H. Kim, D. M. Yu, S. So, Y. T. Hong, S. J. Yoon, S.-G. Oh, S. Y. Kang, O.-H. Kim, H. S. Park, B. Bae, Y.-E. Sung, Y.-H. Cho, J. Y. Lee, Energy Environ. Sci. 2020, 13, 3633–3645;
- 2cD. Li, A. R. Motz, C. Bae, C. Fujimoto, G. Yang, F.-Y. Zhang, K. E. Ayers, Y. S. Kim, Energy Environ. Sci. 2021, 14, 3393–3419.
- 3
- 3aZ. Liu, S. D. Sajjad, Y. Gao, H. Yang, J. J. Kaczur, R. I. Masel, Int. J. Hydrogen Energy 2017, 42, 29661–29665;
- 3bQ. Wei, X. Cao, P. Veh, A. Konovalova, P. Mardle, P. Overton, S. Cassegrain, S. Vierrath, M. Breitwieser, S. Holdcroft, Sustain. Energy Fuels 2022, 6, 3551–3564;
- 3cP. Fortin, T. Khoza, X. Cao, S. Y. Martinsen, A. Oyarce Barnett, S. Holdcroft, J. Power Sources 2020, 451, 227814;
- 3dN. Chen, C. Hu, H. H. Wang, S. P. Kim, H. M. Kim, W. H. Lee, J. Y. Bae, J. H. Park, Y. M. Lee, Angew. Chem. Int. Ed. 2021, 60, 7710–7718.
- 4D. Henkensmeier, M. Najibah, C. Harms, J. Žitka, J. Hnát, K. Bouzek, J. Electrochem. Energy Convers. Storage 2021, 18, 024001.
- 5
- 5aH. Chen, R. Tao, K. T. Bang, M. Shao, Y. Kim, Adv. Energy Mater. 2022, 12, 2200934;
- 5bW. You, K. J. T. Noonan, G. W. Coates, Prog. Polym. Sci. 2020, 100, 101177;
- 5cN. Chen, Y. M. Lee, Prog. Polym. Sci. 2021, 113, 101345.
- 6
- 6aJ. Wang, Y. Zhao, B. P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, Y. Yan, Nat. Energy 2019, 4, 392–398;
- 6bN. Li, L. Wang, M. Hickner, Chem. Commun. 2014, 50, 4092–4095.
- 7
- 7aM. Mandal, G. Huang, N. U. Hassan, W. E. Mustain, P. A. Kohl, J. Mater. Chem. A 2020, 8, 17568–17578;
- 7bL. Li, J. Wang, M. Hussain, L. Ma, N. A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, F. Zhang, J. Membr. Sci. 2021, 624, 119088;
- 7cB. Shi, Y. Li, H. Zhang, W. Wu, R. Ding, J. Dang, J. Wang, J. Membr. Sci. 2016, 498, 242–253;
- 7dT. Huang, J. Zhang, Y. Pei, X. Liu, J. Xue, H. Jiang, X. Qiu, Y. Yin, H. Wu, Z. Jiang, M. D. Guiver, Chem. Eng. J. 2021, 418, 129311.
- 8
- 8aX. Li, K. Yang, Z. Wang, Y. Chen, Y. Li, J. Guo, J. Zheng, S. Li, S. Zhang, Macromolecules 2022, 55, 10607–10617;
- 8bE. A. Weiber, D. Meis, P. Jannasch, Polym. Chem. 2015, 6, 1986–1996;
- 8cB. Bae, K. Miyatake, M. Watanabe, Macromolecules 2010, 43, 2684–2691.
- 9
- 9aL. Wang, M. A. Hickner, Soft Matter 2016, 12, 5359–5371;
- 9bM. Tanaka, K. Fukasawa, E. Nishino, S. Yamaguchi, K. Yamada, H. Tanaka, B. Bae, K. Miyatake, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 10646–10654.
- 10R. He, P. Wen, H.-N. Zhang, S. Guan, G. Xie, L.-Z. Li, M.-H. Lee, X.-D. Li, J. Membr. Sci. 2018, 556, 73–84.
- 11C. X. Lin, H. Y. Wu, L. Li, X. Q. Wang, Q. G. Zhang, A. M. Zhu, Q. L. Liu, ACS Appl. Mater. Interfaces 2018, 10, 18327–18337.
- 12A. D. Mohanty, S. E. Tignor, J. A. Krause, Y.-K. Choe, C. Bae, Macromolecules 2016, 49, 3361–3372.
- 13W. You, E. Padgett, S. N. MacMillan, D. A. Muller, G. W. Coates, Proc. Natl. Acad. Sci. USA 2019, 116, 9729–9734.
- 14
- 14aX. Wu, N. Chen, H. A. Klok, Y. M. Lee, X. Hu, Angew. Chem. Int. Ed. 2022, 61, e202114892;
- 14bT. Jiang, C. Wu, Y. Zhou, S. Cheng, S. Yang, H. Wei, Y. Ding, Y. Wu, J. Membr. Sci. 2022, 647, 120342;
- 14cD. Pan, P. M. Bakvand, T. H. Pham, P. Jannasch, J. Mater. Chem. A 2022, 10, 16478–16489.
- 15W. H. Lee, Y. S. Kim, C. Bae, ACS Macro Lett. 2015, 4, 814–818.
- 16
- 16aJ. Ran, L. Ding, C. Chu, X. Liang, T. Pan, D. Yu, T. Xu, J. Mater. Chem. A 2018, 6, 17101–17110;
- 16bC. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, Q. L. Liu, J. Mater. Chem. A 2016, 4, 13938–13948;
- 16cL. Zhu, X. Peng, S. L. Shang, M. T. Kwasny, T. J. Zimudzi, X. Yu, N. Saikia, J. Pan, Z. K. Liu, G. N. Tew, W. E. Mustain, M. Yandrasits, M. A. Hickner, Adv. Funct. Mater. 2019, 29, 1902059.
- 17
- 17aH.-S. Dang, P. Jannasch, Macromolecules 2015, 48, 5742–5751;
- 17bH.-S. Dang, P. Jannasch, J. Mater. Chem. A 2016, 4, 17138–17153.
- 18M. Rezayani, F. Sharif, H. Makki, J. Mater. Chem. A 2022, 10, 18295–18307.
- 19
- 19aW. H. Lee, E. J. Park, J. Han, D. W. Shin, Y. S. Kim, C. Bae, ACS Macro Lett. 2017, 6, 566–570;
- 19bS. Maurya, S. Noh, I. Matanovic, E. J. Park, C. Narvaez Villarrubia, U. Martinez, J. Han, C. Bae, Y. S. Kim, Energy Environ. Sci. 2018, 11, 3283–3291;
- 19cE. J. Park, S. Maurya, M. R. Hibbs, C. H. Fujimoto, K.-D. Kreuer, Y. S. Kim, Macromolecules 2019, 52, 5419–5428.
- 20L. Li, T. Jiang, S. Wang, S. Cheng, X. Li, H. Wei, Y. Ding, ACS Appl. Energ. Mater. 2022, 5, 2462–2473.
- 21X. Luo, D. I. Kushner, J. Li, E. J. Park, Y. S. Kim, A. Kusoglu, Adv. Funct. Mater. 2021, 31, 2008778.
- 22S. P. Ertem, E. B. Coughlin, Macromol. Rapid Commun. 2022, 43, e2100610.
- 23D. Koronka, A. Matsumoto, K. Otsuji, K. Miyatake, RSC Adv. 2019, 9, 37391–37402.
- 24S. Zhang, X. Zhu, C. Jin, J. Mater. Chem. A 2019, 7, 6883–6893.
- 25M. Guo, T. Ban, Y. Wang, Y. Wang, Y. Zhang, J. Zhang, X. Zhu, J. Membr. Sci. 2022, 647, 120299.
- 26
- 26aM. D. T. Nguyen, S. Yang, D. Kim, J. Power Sources 2016, 328, 355–363;
- 26bT. Ban, M. Guo, Y. Wang, Y. Zhang, X. Zhu, J. Membr. Sci. 2023, 668, 121255.
- 27
- 27aH. Peng, Q. Li, M. Hu, L. Xiao, J. Lu, L. Zhuang, J. Power Sources 2018, 390, 165–167;
- 27bN. Chen, H. H. Wang, S. P. Kim, H. M. Kim, W. H. Lee, C. Hu, J. Y. Bae, E. S. Sim, Y. C. Chung, J. H. Jang, S. J. Yoo, Y. Zhuang, Y. M. Lee, Nat. Commun. 2021, 12, 2367;
- 27cW. Yuan, L. Zeng, S. Jiang, C. Yuan, Q. He, J. Wang, Q. Liao, Z. Wei, J. Membr. Sci. 2022, 657, 120676.
- 28D. Li, E. J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E. D. Baca, C. Fujimoto, H. T. Chung, Y. S. Kim, Nat. Energy 2020, 5, 378–385.
- 29N. Chen, S. Y. Paek, J. Y. Lee, J. H. Park, S. Y. Lee, Y. M. Lee, Energy Environ. Sci. 2021, 14, 6338–6348.
- 30
- 30aX. Yan, X. Yang, X. Su, L. Gao, J. Zhao, L. Hu, M. Di, T. Li, X. Ruan, G. He, J. Power Sources 2020, 480, 228805;
- 30bM. Liu, X. Hu, B. Hu, L. Liu, N. Li, J. Membr. Sci. 2022, 642, 119966;
- 30cM. S. Cha, J. E. Park, S. Kim, S.-H. Shin, S. H. Yang, S. J. Lee, T.-H. Kim, D. M. Yu, S. So, K. M. Oh, Y.-E. Sung, Y.-H. Cho, J. Y. Lee, J. Mater. Chem. A 2022, 10, 9693–9706;
- 30dZ. Xu, L. Wan, Y. Liao, P. Wang, K. Liu, B. Wang, J. Mater. Chem. A 2021, 9, 23485–23496;
- 30eB. Motealleh, Z. Liu, R. I. Masel, J. P. Sculley, Z. Richard Ni, L. Meroueh, Int. J. Hydrogen Energy 2021, 46, 3379–3386;
- 30fJ. Xiao, A. M. Oliveira, L. Wang, Y. Zhao, T. Wang, J. Wang, B. P. Setzler, Y. Yan, ACS Catal. 2021, 11, 264–270;
- 30gL. Liu, L. Bai, Z. Liu, S. Miao, J. Pan, L. Shen, Y. Shi, N. Li, J. Membr. Sci. 2023, 665, 121135;
- 30hA. K. Niaz, A. Akhtar, J.-Y. Park, H.-T. Lim, J. Power Sources 2021, 481, 229093.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.