Asymmetric Solvents Regulated Crystallization-Limited Electrolytes for All-Climate Lithium Metal Batteries
Dr. Yuankun Wang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorZhiming Li
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Weiwei Xie
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qiu Zhang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorZhenkun Hao
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorChunyu Zheng
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorJinze Hou
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorDr. Yong Lu
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorDr. Zhenhua Yan
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorProf. Qing Zhao
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorCorresponding Author
Prof. Jun Chen
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorDr. Yuankun Wang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorZhiming Li
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Weiwei Xie
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Qiu Zhang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorZhenkun Hao
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorChunyu Zheng
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorJinze Hou
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorDr. Yong Lu
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorDr. Zhenhua Yan
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorProf. Qing Zhao
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorCorresponding Author
Prof. Jun Chen
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071 Tianjin, China
Search for more papers by this authorAbstract
Electrolytes that can keep liquid state are one of the most important physical metrics to ensure the ions transfer with stable operation of rechargeable lithium-based batteries at a wide temperature window. It is generally accepted that strong polar solvents with high melting points favor the safe operation of batteries above room temperatures but are susceptible to crystallization at low temperatures (≤−40 °C). Here, a crystallization limitation strategy was proposed to handle this issue. We demonstrate that, although the high melting points of ethylene sulfite (ES, −17 °C) and fluoroethylene carbonate (FEC, ≈23 °C), their mixtures can avoid crystallization at low temperatures, which can be attributed to low intermolecular interactions and altered molecular motion dynamics. A suitable ES/FEC ratio (10 % FEC) can balance the bulk and interface transport of ions, enabling LiNi0.8Mn0.1Co0.1O2||lithium (NCM811||Li) full cells to deliver excellent temperature resilience and cycling stability over a wide temperature range from −50 °C to +70 °C. More than 66 % of the capacity retention was achieved at −50 °C compared to room temperature. The NCM811||Li pouch cells exhibit high cycling stability under realistic conditions (electrolyte weight to cathode capacity ratio (E/C)≤3.5 g Ah−1, negative to positive electrode capacity ratio (N/P)≤1.09) at different temperatures.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided in this paper.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202310905-sup-0001-misc_information.pdf6.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269–280;
- 1bW. Gu, G. Xue, Q. Dong, R. Yi, Y. Mao, L. Zheng, H. Zhang, X. Fan, Y. Shen, L. Chen, eScience 2022, 2, 486–493;
- 1cZ. Sun, Y. Wang, S. Shen, X. Li, X. Hu, M. Hu, Y. Su, C. Xiao, S. Ding, Angew. Chem. Int. Ed. 2023, 62, e202309622.
- 2
- 2aD. Luo, M. Li, Y. Zheng, Q. Ma, R. Gao, Z. Zhang, H. Dou, G. Wen, L. Shui, A. Yu, X. Wang, Z. Chen, Adv. Sci. 2021, 8, 2101051;
- 2bN. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen, C. Wang, X. Fan, Adv. Mater. 2022, 34, 2107899.
- 3
- 3aP. Xiao, R. Luo, Z. Piao, C. Li, J. Wang, K. Yu, G. Zhou, H.-M. Cheng, ACS Energy Lett. 2021, 6, 3170–3179;
- 3bJ. Holoubek, M. Yu, S. Yu, M. Li, Z. Wu, D. Xia, P. Bhaladhare, M. S. Gonzalez, T. A. Pascal, P. Liu, Z. Chen, ACS Energy Lett. 2020, 5, 1438–1447;
- 3cW. Cao, Q. Li, X. Yu, H. Li, eScience 2022, 2, 47–78.
- 4
- 4aW. Zhang, H. Xia, Z. Zhu, Z. Lv, S. Cao, J. Wei, Y. Luo, Y. Xiao, L. Liu, X. Chen, CCS Chem. 2021, 3, 1245–1255;
- 4bY. Yin, Y. Yang, D. Cheng, M. Mayer, J. Holoubek, W. Li, G. Raghavendran, A. Liu, B. Lu, D. M. Davies, Z. Chen, O. Borodin, Y. S. Meng, Nat. Energy 2022, 7, 548–559.
- 5
- 5aX. Dong, Z. Guo, Z. Guo, Y. Wang, Y. Xia, Joule 2018, 2, 902–913;
- 5bJ. Xu, X. Wang, N. Yuan, J. Ding, S. Qin, J. M. Razal, X. Wang, S. Ge, Y. Gogotsi, Energy Storage Mater. 2019, 23, 383–389;
- 5cC. Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji, X. G. Yang, Y. Leng, Nature 2016, 529, 515–518.
- 6
- 6aY. Yang, D. M. Davies, Y. Yin, O. Borodin, J. Z. Lee, C. Fang, M. Olguin, Y. Zhang, E. S. Sablina, X. Wang, C. S. Rustomji, Y. S. Meng, Joule 2019, 3, 1986–2000;
- 6bC. S. Rustomji, Y. Yang, T. K. Kim, J. Mac, Y. J. Kim, E. Caldwell, H. Chung, Y. S. Meng, Science 2017, 356, eaal4263.
- 7X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, Nat. Energy 2019, 4, 882–890.
- 8
- 8aS. P. Rao, S. Sunkada, Resonance 2007, 12, 43–57;
- 8bY. Wang, Z. Li, Y. Hou, Z. Hao, Q. Zhang, Y. Ni, Y. Lu, Z. Yan, K. Zhang, Q. Zhao, F. Li, J. Chen, Chem. Soc. Rev. 2023, 52, 2713–2763.
- 9R. J. C. Brown, J. Chem. Educ. 2000, 77, 724.
- 10S. H. Yalkowsky, J. Pharm. Sci. 2014, 103, 2629–2634.
- 11R. Abramowitz, S. H. Yalkowsky, Pharm. Res. 1990, 7, 942–947.
- 12
- 12aL. Pauling, J. Am. Chem. Soc. 1935, 57, 2680–2684;
- 12bT. Carnelley, Lond. Edinb. Dublin Philos. Mag. J. Sci. 1882, 13, 112–130.
10.1080/14786448208627154 Google Scholar
- 13L. Jarecki, Colloid Polym. Sci. 1991, 269, 11–27.
- 14
- 14aB. Wurm, M. Münsterer, J. Richardi, R. Buchner, J. Barthel, J. Mol. Liq. 2005, 119, 97–106;
- 14bR. Buchner, G. Hefter, Phys. Chem. Chem. Phys. 2009, 11, 8984–8999;
- 14cT. Gomti Devi, J. Raman Spectrosc. 2010, 41, 1261–1265.
- 15N. von Aspern, G. V. Roschenthaler, M. Winter, I. Cekic-Laskovic, Angew. Chem. Int. Ed. 2019, 58, 15978–16000.
- 16W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia, S. Yan, X. Chen, H. Zhou, H. Dong, K. Liu, Nat. Commun. 2022, 13, 2029.
- 17
- 17aM. Takemoto, H. Maki, M. Mizuhata, ECS Trans. 2017, 75, 1–9;
- 17bY. Horowitz, H. L. Han, F. A. Soto, W. T. Ralston, P. B. Balbuena, G. A. Somorjai, Nano Lett. 2018, 18, 1145–1151.
- 18
- 18aI. T. Rakipov, A. A. Petrov, A. A. Akhmadiyarov, A. A. Khachatrian, M. A. Varfolomeev, J. Mol. Liq. 2022, 354, 118838;
- 18bB. N. Solomonov, M. A. Varfolomeev, V. B. Novikov, A. E. Klimovitskii, Spectrochim. Acta Part A 2006, 64, 397–404.
- 19
- 19aT. C. Penna, L. F. O. Faria, M. C. C. Ribeiro, J. Mol. Liq. 2015, 209, 676–682;
- 19bL. A. Nafie, J. Raman Spectrosc. 2013, 44, 1629–1648.
- 20S. Adhikari, S. S. Khatri, Pramana 2021, 95, 133.
- 21
- 21aS. P. Ding, K. Xu, S. S. Zhang, T. R. Jow, K. Amine, G. L. Henriksen, J. Electrochem. Soc. 1999, 146, 3974–3980;
- 21bM. S. Ding, K. Xu, S. Zhang, T. R. Jow, J. Electrochem. Soc. 2001, 148, A299;
- 21cM. S. Ding, J. Electrochem. Soc. 2003, 150, A455;
- 21dM. S. Ding, J. Electrochem. Soc. 2002, 149, A1065.
- 22Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Nat. Commun. 2020, 11, 4463.
- 23X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. C. Liou, K. Amine, K. Xu, C. Wang, Nat. Nanotechnol. 2018, 13, 715–722.
- 24S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J.-G. Zhang, W. Xu, Nat. Energy 2018, 3, 739–746.
- 25Z. Sun, Y. Wang, Y. Qin, P. Yang, H. Wu, X. Li, X. Hu, C. Xiao, H. Zhao, M. Ma, Y. Su, S. Ding, Energy Storage Mater. 2023, 58, 110–122.
- 26A. Gupta, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001972.
- 27
- 27aJ. Park, S. Ha, J. Y. Jung, J. H. Hyun, S. H. Yu, H. K. Lim, N. D. Kim, Y. S. Yun, Adv. Sci. 2021, 9, 2104145;
- 27bS. Ha, H. J. Yoon, J. I. Jung, H. Kim, S. Won, J. H. Kwak, H.-D. Lim, H.-J. Jin, J. J. Wie, Y. S. Yun, Energy Storage Mater. 2022, 37, 567–575.
- 28C.-Z. Zhao, X.-B. Cheng, R. Zhang, H.-J. Peng, J.-Q. Huang, R. Ran, Z.-H. Huang, F. Wei, Q. Zhang, Energy Storage Mater. 2016, 3, 77–84.
- 29G. H. Wrodnigg, J. O. Besenhard, M. Winter, J. Electrochem. Soc. 1999, 146, 470–472.
- 30Y. Jin, P. M. L. Le, P. Gao, Y. Xu, B. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. Hu, L. Zhong, B. E. Matthews, R. Yi, C. Wang, X. Li, J. Liu, J.-G. Zhang, Nat. Energy 2022, 7, 718–725.
- 31
- 31aG. Zhang, J. Chang, L. Wang, J. Li, C. Wang, R. Wang, G. Shi, K. Yu, W. Huang, H. Zheng, T. Wu, Y. Deng, J. Lu, Nat. Commun. 2023, 14, 1081;
- 31bJ. Shi, C. Xu, J. Lai, Z. Li, Y. Zhang, Y. Liu, K. Ding, Y. P. Cai, R. Shang, Q. Zheng, Angew. Chem. Int. Ed. 2023, 62, e202218151;
- 31cQ. Wang, C. Zhao, Z. Yao, J. Wang, F. Wu, S. G. H. Kumar, S. Ganapathy, S. Eustace, X. Bai, B. Li, J. Lu, M. Wagemaker, Adv. Mater. 2023, 35, 2210677;
- 31dT. Ma, Y. Ni, Q. Wang, W. Zhang, S. Jin, S. Zheng, X. Yang, Y. Hou, Z. Tao, J. Chen, Angew. Chem. Int. Ed. 2022, 61, e202207927.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.