Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL–D05139β Potassium Salt
Wenjun Luo
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Fang Xu
International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632 Guangzhou, Guangdong, P. R. China
Search for more papers by this authorZhenguo Wang
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorProf. Jiyan Pang
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorZixu Wang
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorZhixiu Sun
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Aiyun Peng
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xiaohui Cao
School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Le Li
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorWenjun Luo
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Fang Xu
International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632 Guangzhou, Guangdong, P. R. China
Search for more papers by this authorZhenguo Wang
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorProf. Jiyan Pang
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorZixu Wang
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorZhixiu Sun
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorDr. Aiyun Peng
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xiaohui Cao
School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Le Li
School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, P. R. China
PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275 Guangzhou, P. R. China
Search for more papers by this authorAbstract
Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton–Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139β, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.
Conflict of interest
Sun Yat-sen University has filed a patent application.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202310118-sup-0001-misc_information.pdf14.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635–648;
- 1bH. Staudinger, E. Hauser, Helv. Chim. Acta 1921, 4, 861–886.
- 2
- 2aY. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin, Tetrahedron 1981, 37, 437–472;
- 2bY. G. Gololobov, L. F. Kasukhin, Tetrahedron 1992, 48, 1353–1406.
- 3
- 3aM. Kabachnik, V. Gilyarov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1956, 5, 809–816;
10.1007/BF01169984 Google Scholar
- 3bJ. Goerdeler, H. Ullmann, Chem. Ber. 1961, 94, 1067–1074.
- 4
- 4aC. I. Schilling, N. Jung, M. Biskup, U. Schepers, S. Bräse, Chem. Soc. Rev. 2011, 40, 4840–4871;
- 4bS. S. Van Berkel, M. B. Van Eldijk, J. C. M. Van Hest, Angew. Chem. Int. Ed. 2011, 50, 8806–8827;
- 4cD. M. Patterson, L. A. Nazarova, J. A. Prescher, ACS Chem. Biol. 2014, 9, 592–605;
- 4dC. Bednarek, I. Wehl, N. Jung, U. Schepers, S. Bräse, Chem. Rev. 2020, 120, 4301–4354;
- 4eE. Poulou, C. P. R. Hackenberger, Isr. J. Chem. 2023, 63, e202200057.
- 5
- 5aE. Saxon, C. R. Bertozzi, Science 2000, 287, 2007–2010;
- 5bE. Saxon, S. J. Luchansky, H. C. Hang, C. Yu, S. C. Lee, C. R. Bertozzi, J. Am. Chem. Soc. 2002, 124, 14893–14902;
- 5cF. L. Lin, H. M. Hoyt, H. Van Halbeek, R. G. Bergman, C. R. Bertozzi, J. Am. Chem. Soc. 2005, 127, 2686–2695;
- 5dS. L. Scinto, D. A. Bilodeau, R. Hincapie, W. Lee, S. S. Nguyen, M. Xu, C. W. am Ende, M. G. Finn, K. Lang, Q. Lin, J. P. Pezacki, J. A. Prescher, M. S. Robillard, J. M. Fox, Nat. Rev. Methods Primers 2021, 1, 30;
- 5eT. K. Heiss, R. S. Dorn, J. A. Prescher, Chem. Rev. 2021, 121, 6802–6849.
- 6
- 6aR. Serwa, L. Wakening, G. d. Signore, M. Mühlberg, I. Claußnitzer, C. Weise, M. Gerrits, C. P. R. Hackenberger, Angew. Chem. Int. Ed. 2009, 48, 8234–8239;
- 6bV. Böhrsch, R. Serwa, P. Majkut, E. Krause, C. P. R. Hackenberger, Chem. Commun. 2010, 46, 3176–3178;
- 6cR. Serwa, P. Majkut, B. Horstmann, J. M. Swiecicki, M. Gerrits, E. Krause, C. P. R. Hackenberger, Chem. Sci. 2010, 1, 596–602;
- 6dV. Böhrsch, T. Mathew, M. Zieringer, M. R. J. Vallée, L. M. Artner, J. Dernedde, R. Haag, C. P. R. Hackenberger, Org. Biomol. Chem. 2012, 10, 6211–6216;
- 6eM. R. J. Vallée, L. M. Artner, J. Dernedde, C. P. R. Hackenberger, Angew. Chem. Int. Ed. 2013, 52, 9504–9508.
- 7
- 7aB. L. Nilsson, L. L. Kiessling, R. T. Raines, Org. Lett. 2000, 2, 1939–1941;
- 7bE. Saxon, J. I. Armstrong, C. R. Bertozzi, Org. Lett. 2000, 2, 2141–2143;
- 7cB. L. Nilsson, L. L. Kiessling, R. T. Raines, Org. Lett. 2001, 3, 9–12;
- 7dM. Sundhoro, S. Jeon, J. Park, O. Ramström, M. Yan, Angew. Chem. Int. Ed. 2017, 56, 12117–12121;
- 7eT. Meguro, N. Terashima, H. Ito, Y. Koike, I. Kii, S. Yoshida, T. Hosoya, Chem. Commun. 2018, 54, 7904–7907.
- 8
- 8aD. Samuel, Pure Appl. Chem. 1964, 8, 449–458;
- 8bM. Grayson, C. E. Farley, C. A. Streuli, Tetrahedron 1967, 23, 1065–1078.
- 9
- 9aH. J. Brass, R. A. DiPrete, J. O. Edwards, R. G. Lawler, R. Curci, G. Modena, Tetrahedron 1970, 26, 4555–4559;
- 9bN. V. Dubrovina, A. Börner, Angew. Chem. Int. Ed. 2004, 43, 5883–5886;
- 9cT. M. Shaikh, C. M. Weng, F. E. Hong, Coord. Chem. Rev. 2012, 256, 771–803;
- 9dA. Gallen, A. Riera, X. Verdaguer, A. Grabulosa, Catal. Sci. Technol. 2019, 9, 5504–5561;
- 9eP. W. N. M. van Leeuwen, I. Cano, Z. Freixa, ChemCatChem 2020, 12, 3982–3994;
- 9fZ.-Y. Wang, Q. Guo, S. Xu, K.-K. Wang, Synthesis 2021, 53, 3683–3698;
- 9gZ.-Y. Wang, Q. Guo, K.-K. Wang, S. Xu, Tetrahedron Lett. 2021, 81, 153352.
- 10
- 10aE. L. Myers, R. T. Raines, Angew. Chem. Int. Ed. 2009, 48, 2359–2363;
- 10bH. H. Chou, R. T. Raines, J. Am. Chem. Soc. 2013, 135, 14936–14939.
- 11
- 11aZ. M. Zhang, P. Chen, W. Li, Y. Niu, X. L. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4350–4354;
- 11bP. Chen, Z. Yue, J. Zhang, X. Lv, L. Wang, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 13316–13320;
- 11cW. Li, J. Zhang, Chem. Soc. Rev. 2016, 45, 1657–1677;
- 11dC. Zhu, H. Chu, G. Li, S. Ma, J. Zhang, J. Am. Chem. Soc. 2019, 141, 19246–19251;
- 11eL. Zhou, S. Li, B. Xu, D. Ji, L. Wu, Y. Liu, Z. M. Zhang, J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 2769–2775.
- 12H. Wang, L. Zhang, Y. Tu, R. Xiang, Y. L. Guo, J. Zhang, Angew. Chem. Int. Ed. 2018, 57, 15787–15791.
- 13
- 13aT. Meguro, S. Yoshida, K. Igawa, K. Tomooka, T. Hosoya, Org. Lett. 2018, 20, 4126–4130;
- 13bT. Aimi, T. Meguro, A. Kobayashi, T. Hosoya, S. Yoshida, Chem. Commun. 2021, 57, 6062–6065.
- 14Early precedents for Staudinger reactions of SPO and acyl azides or methyl azidoformate:
- 14aE. P. Pérez, F. López-Ortiz, Chem. Commun. 2000, 2029–2030;
- 14bI. Currie, B. E. Sleebs, Org. Lett. 2021, 23, 464–468;
- 14cThe Staudinger-type product can also be formed via a nitrene insertion mechanism: Y. Wu, K. Chen, X. Ge, P. Ma, Z. Xu, H. Lu, G. Li, Org. Lett. 2020, 22, 6143–6149.
- 15
- 15aW. Luo, Z. Wang, X. Cao, D. Liang, M. Wei, K. Yin, L. Li, J. Org. Chem. 2020, 85, 14785–14794;
- 15bX. Li, Z. Wang, W. Luo, Z. Wang, K. Yin, L. Li, Molecules 2022, 27, 5707.
- 16
- 16aS. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188–5240;
- 16bS. Xie, M. Sundhoro, K. Houk, M. Yan, Acc. Chem. Res. 2020, 53, 937–948;
- 16cZ. K. Liu, Q. Q. Zhao, Y. Gao, Y. X. Hou, X. Q. Hu, Adv. Synth. Catal. 2021, 363, 411–424;
- 16dA. A. Nayl, A. A. Aly, W. A. Arafa, I. M. Ahmed, A. I. Abd-Elhamid, E. M. El-Fakharany, M. A. Abdelgawad, H. N. Tawfeek, S. Bräse, Molecules 2022, 27, 3716.
- 17Chlorotrimethylsilane has been reported to form silylphosphonites in situ:
- 17aM. N. Dimukhametov, I. A. Nuretdinov, Russ. Chem. Bull. 1983, 32, 1103;
- 17bI. Wilkening, G. d. Signore, C. P. R. Hackenberger, Chem. Commun. 2011, 47, 349–351.
- 18C. C. Nawrat, C. J. Moody, Nat. Prod. Rep. 2011, 28, 1426–1444.
- 19H. He, W. D. Ding, V. S. Bernan, A. D. Richardson, C. M. Ireland, M. Greenstein, G. A. Ellestad, G. T. Carter, J. Am. Chem. Soc. 2001, 123, 5362–5363.
- 20
- 20aS. B. Herzon, L. Lu, C. M. Woo, S. L. Gholap, J. Am. Chem. Soc. 2011, 133, 7260–7263;
- 20bC. M. Woo, N. E. Beizer, J. E. Janso, S. B. Herzon, J. Am. Chem. Soc. 2012, 134, 15285–15288;
- 20cC. M. Woo, S. L. Gholap, L. Lu, M. Kaneko, Z. Li, P. C. Ravikumar, S. B. Herzon, J. Am. Chem. Soc. 2012, 134, 17262–17273;
- 20dL. C. Colis, C. M. Woo, D. C. Hegan, Z. Li, P. M. Glazer, S. B. Herzon, Nat. Chem. 2014, 6, 504–510;
- 20eL. C. Colis, D. C. Hegan, M. Kaneko, P. M. Glazer, S. B. Herzon, J. Am. Chem. Soc. 2015, 137, 5741–5747;
- 20fM. Xue, S. B. Herzon, J. Am. Chem. Soc. 2016, 138, 15559–15562;
- 20gC. M. Woo, Z. Li, E. K. Paulson, S. B. Herzon, Proc. Natl. Acad. Sci. USA 2016, 113, 2851–2856;
- 20hS. B. Herzon, Acc. Chem. Res. 2017, 50, 2577–2588;
- 20iL. J. Kim, M. Xue, X. Li, Z. Xu, E. Paulson, B. Mercado, H. M. Nelson, S. B. Herzon, J. Am. Chem. Soc. 2021, 143, 6578–6585.
- 21Q. Xu, C. Q. Zhao, L. B. Han, J. Am. Chem. Soc. 2008, 130, 12648–12655.
- 22Y. Qian, Q. Dai, Z. Li, Y. Liu, J. Zhang, Org. Lett. 2020, 22, 4742–4748.
- 23
- 23aL. P. Reiff, H. S. Aaron, J. Am. Chem. Soc. 1970, 92, 5275–5276;
- 23bG. Wang, R. Shen, Q. Xu, M. Goto, Y. Zhao, L. B. Han, J. Org. Chem. 2010, 75, 3890–3892;
- 23cY. Zhou, G. Wang, Y. Saga, R. Shen, M. Goto, Y. Zhao, L. B. Han, J. Org. Chem. 2010, 75, 7924–7927;
- 23dB. Xiong, Y. Zhou, C. Zhao, M. Goto, S. F. Yin, L. B. Han, Tetrahedron 2013, 69, 9373–9380.
- 24R. Kreher, R. Halpaap, Z. Naturforsch. 1982, 37b, 1178–1183.
- 25
- 25aU. Schöllkopf, H. Frasnelli, Angew. Chem. Int. Ed. 1970, 9, 301–302;
- 25bEthyl Diazolithioacetate, C. J. Moody, in e-EROS Electronic Encyclopedia of Reagents for Organic Synthesis (Ed.: L. A. Paquette), Wiley, Hoboken, 2001;
- 25cS. T. R. Müller, T. Hokamp, S. Ehrmann, P. Hellier, T. Wirth, Chem. Eur. J. 2016, 22, 11940–11942.
- 26
- 26aM. D. Lee, D. B. Borders, D. P. Labeda, A. A. Fantini, R. T. Testa, (American Cyanamid Company), EP 0123170 A2, 1984;
- 26bM. D. Lee, A. A. Fantini, N. A. Kuck, M. Greenstein, R. T. Testa, D. B. Borders, J. Antibiot. 1987, 40, 1657–1663.
- 27A H/D exchange between the CHN2 group and MeOD or D2O was observed:
- 27aS. P. Bew, P. A. Ashford, D. U. Bachera, Synthesis 2013, 45, 903–912;
- 27bH. Mao, A. Lin, Y. Shi, Z. Mao, X. Zhu, W. Li, H. Hu, Y. Cheng, C. Zhu, Angew. Chem. Int. Ed. 2013, 52, 6288–6292.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.