Mild Synthesis of Polychlorinated Arenes for Efficient Organic Light-emitting Diodes with Dual Thermally Activated Delayed Fluorescence
Yihang Jiao
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorZijian Chen
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Weidong Qiu
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorHongwei Xie
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorJiaji Yang
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Xiaomei Peng
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Wentao Xie
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorQing Gu
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Mengke Li
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Kunkun Liu
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shi-Jian Su
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorYihang Jiao
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorZijian Chen
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Weidong Qiu
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorHongwei Xie
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorJiaji Yang
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Xiaomei Peng
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Wentao Xie
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorQing Gu
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Mengke Li
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorDr. Kunkun Liu
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shi-Jian Su
State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640 Guang-dong Province, P. R. China
Search for more papers by this authorAbstract
Polychlorinated (hetero)arenes have shown great promise for organic optoelectronics applications. However, the harsh synthetic routes for polychlorinated compounds and the possible luminescence quenching from the compact intermolecular π–π stacking induced by chlorine atoms limit their investigations and applications in luminescent materials. Herein, two isomeric polychlorinated polycyclic aromatic hydrocarbon (PAH) compounds JY-1-Cl and JY-2-Cl consisting of rigidified aryl ketones and amine are designed and synthesized under mild conditions through nucleophilic chlorination intermediated by an electron donor-acceptor complex. Among them, as a result of the strong π–π interactions induced by chlorine atoms, JY-2-Cl exhibits bright monomer and dimer emissions with dual thermally activated delayed fluorescence (TADF) characters. Notably, compared with the non-chlorinated compounds, a high photoluminescence quantum yield is maintained after introducing multiple chlorine atoms into JY-2-Cl. The first dual-TADF organic light-emitting diodes are also successfully fabricated with maximum external quantum efficiency as high as 29.1 % by employing JY-2-Cl as emitter. This work presents a new paradigm and synthesis of polychlorinated amine-carbonyl PAHs and demonstrates the great potential of the chlorinated materials for luminescent applications.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202309104-sup-0001-misc_information.pdf4.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, ChemBioChem 2004, 5, 637–643;
- 1bJ.-P. Bégué, D. Bonnet-Delpon, J. Fluorine Chem. 2006, 127, 992–1012;
- 1cK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 1dS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330;
- 1eM. Z. Hernandes, S. M. Cavalcanti, D. R. Moreira, W. F. de Azevedo Junior, A. C. Leite, Curr. Drug Targets 2010, 11, 303–314;
- 1fR. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363–1388;
- 1gJ. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506;
- 1hG. W. Gribble, Modern Alkaloids, Wiley-VCH, Weinheim, 2007, pp. 591–618.
10.1002/9783527621071.ch19 Google Scholar
- 2
- 2aT. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc. Rev. 2013, 42, 1667–1680;
- 2bA. Vargas Jentzsch, Pure Appl. Chem. 2015, 87, 15–41.
- 3
- 3aD. B. Harper, D. O'Hagan, Nat. Prod. Rep. 1994, 11, 123–133;
- 3bA. Murai, in Structure and Chemistry (Part E), Vol. 19 (Ed.: R. Atta ur), Elsevier, Amsterdam, 1996, pp. 411–461;
- 3cG. W. Gribble, Acc. Chem. Res. 1998, 31, 141–152;
- 3dJ. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. Munro, M. R. Prinsep, Nat. Prod. Rep. 2012, 29, 144–222.
- 4
- 4aM. L. Tang, Z. A. Bao, Chem. Mater. 2011, 23, 446–455;
- 4bC. V. Amanchukwu, J. R. Harding, Y. Shao-Horn, P. T. Hammond, Chem. Mater. 2015, 27, 550–561.
- 5G. P. Kini, S. J. Jeon, D. K. Moon, Adv. Mater. 2020, 32, 1906175.
- 6
- 6aK. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi, T. Horaguchi, Chem. Lett. 2003, 32, 932–933;
- 6bA. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48, 8424–8450;
- 6cL. Yang, Z. Lu, S. S. Stahl, Chem. Commun. 2009, 6460–6462;
- 6dF. Mo, J. M. Yan, D. Qiu, F. Li, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2010, 49, 2028–2032;
- 6eR. J. Ouellette, J. D. Rawn, Organic Chemistry, Elsevier, Amsterdam, 2014, pp. 417–451;
10.1016/B978-0-12-800780-8.00013-9 Google Scholar
- 6fR. A. Rodriguez, C. M. Pan, Y. Yabe, Y. Kawamata, M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2014, 136, 6908–6911;
- 6gS. M. Maddox, C. J. Nalbandian, D. E. Smith, J. L. Gustafson, Org. Lett. 2015, 17, 1042–1045;
- 6hR. C. Samanta, H. Yamamoto, Chem. Eur. J. 2015, 21, 11976–11979;
- 6iA. van der Werf, N. Selander, Org. Lett. 2015, 17, 6210–6213;
- 6jT. Hering, B. König, Tetrahedron 2016, 72, 7821–7825;
- 6kS. M. Maddox, A. N. Dinh, F. Armenta, J. Um, J. L. Gustafson, Org. Lett. 2016, 18, 5476–5479;
- 6lD. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003–8104;
- 6mM. Wang, Y. Zhang, T. Wang, C. Wang, D. Xue, J. Xiao, Org. Lett. 2016, 18, 1976–1979;
- 6nX. Xiong, Y. Y. Yeung, Angew. Chem. Int. Ed. 2016, 55, 16101–16105;
- 6oL. Zhang, X. Hu, Chem. Sci. 2017, 8, 7009–7013;
- 6pX. Xiong, Y.-Y. Yeung, ACS Catal. 2018, 8, 4033–4043;
- 6qS. Song, X. Li, J. Wei, W. Wang, Y. Zhang, L. Ai, Y. Zhu, X. Shi, X. Zhang, N. Jiao, Nat. Catal. 2019, 3, 107–115.
- 7
- 7aW. P. Gilbreath, G. H. Cady, Inorg. Chem. 1963, 2, 496–499;
- 7bA. V. Fokin, Y. N. Studnev, A. I. Rapkin, J. Fluorine Chem. 1981, 18, 553–572.
- 8W. D. Watson, J. Org. Chem. 1985, 50, 2145–2148.
- 9
- 9aJ. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970;
- 9bT. Förster, K. Kasper, Z. Phys. Chem. 1954, 1, 275–277;
10.1524/zpch.1954.1.5_6.275 Google Scholar
- 9cJ. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 10
- 10aX. Cai, Z. Qiao, M. Li, X. Wu, Y. He, X. Jiang, Y. Cao, S.-J. Su, Angew. Chem. Int. Ed. 2019, 58, 13522–13531;
- 10bW. Qiu, D. Liu, Z. Chen, Y. Gan, S. Xiao, X. Peng, D. Zhang, X. Cai, M. Li, W. Xie, G. Sun, Y. Jiao, Q. Gu, D. Ma, S.-J. Su, Matter 2023, 6, 1231–1248;
- 10cN. Tang, J. Zhou, L. Wang, M. Stolte, G. Xie, X. Wen, L. Liu, F. Würthner, J. Gierschner, Z. Xie, Nat. Commun. 2023, 14, 1922.
- 11
- 11aJ. Xu, X. Zhu, J. Guo, J. Fan, J. Zeng, S. Chen, Z. Zhao, B. Z. Tang, ACS Mater. Lett. 2019, 1, 613–619;
- 11bY. Xiang, Y. Zhao, N. Xu, S. Gong, F. Ni, K. Wu, J. Luo, G. Xie, Z.-H. Lu, C. Yang, J. Mater. Chem. C 2017, 5, 12204–12210;
- 11cY. Lee, J.-I. Hong, J. Mater. Chem. C 2022, 10, 11855–11861.
- 12
- 12aN. Gan, X. Wang, H. Ma, A. Lv, H. Wang, Q. Wang, M. Gu, S. Cai, Y. Zhang, L. Fu, M. Zhang, C. Dong, W. Yao, H. Shi, Z. An, W. Huang, Angew. Chem. Int. Ed. 2019, 58, 14140–14145;
- 12bQ. Liao, Q. Gao, J. Wang, Y. Gong, Q. Peng, Y. Tian, Y. Fan, H. Guo, D. Ding, Q. Li, Z. Li, Angew. Chem. Int. Ed. 2020, 59, 9946–9951.
- 13K. Bruggermann, J. K. Kochi, J. Org. Chem. 1992, 57, 2956–2960.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.