A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections
Yiwen Zhu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Contribution: Methodology (equal), Software (equal), Writing - original draft (lead)
Search for more papers by this authorMinzheng Gao
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Contribution: Methodology (equal), Software (equal), Writing - original draft (equal)
Search for more papers by this authorMengrui Su
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Methodology (equal)
Search for more papers by this authorYanzhe Shen
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Methodology (supporting)
Search for more papers by this authorKai Zhang
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Data curation (lead)
Search for more papers by this authorCorresponding Author
Bingran Yu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Conceptualization (lead), Funding acquisition (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Fu-Jian Xu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYiwen Zhu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Contribution: Methodology (equal), Software (equal), Writing - original draft (lead)
Search for more papers by this authorMinzheng Gao
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Contribution: Methodology (equal), Software (equal), Writing - original draft (equal)
Search for more papers by this authorMengrui Su
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Methodology (equal)
Search for more papers by this authorYanzhe Shen
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Methodology (supporting)
Search for more papers by this authorKai Zhang
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Data curation (lead)
Search for more papers by this authorCorresponding Author
Bingran Yu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Contribution: Conceptualization (lead), Funding acquisition (equal), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Fu-Jian Xu
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorAbstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the “singlet oxygen battery” CARG-1O2 and released singlet oxygen without external irradiation or oxygen. CARG-1O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202306803-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Spellberg, J. G. Bartlett, D. N. Gilbert, N. Engl. J. Med. 2013, 368, 299–302.
- 2
- 2aM. Piksa, C. Lian, I. C. Samuel, K. J. Pawlik, I. D. W. Samuel, K. Matczyszyn, Chem. Soc. Rev. 2023, 52, 1697–1722;
- 2bM. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G. P. Tegos, M. R. Hamblin, Lancet Infect. Dis. 2017, 17, e49–e55.
- 3
- 3aT. C. Pham, V.-N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 2021, 121, 13454–13619;
- 3bH. Tang, X. Qu, W. Zhang, X. Chen, S. Zhang, Y. Xu, H. Yang, Y. Wang, J. Yang, W.-E. Yuan, B. Yue, Adv. Mater. 2022, 34, 2107300;
- 3cX. He, Y. Yang, Y. Guo, S. Lu, Y. Du, J. J. Li, X. Zhang, N. L. C. Leung, Z. Zhao, G. Niu, S. Yang, Z. Weng, R. T. K. Kwok, J. W. Y. Lam, G. Xie, B. Z. Tang, J. Am. Chem. Soc. 2020, 142, 3959–3969.
- 4H. Hu, W. Feng, X. Qian, L. Yu, Y. Chen, Y. Li, Adv. Mater. 2021, 33, 2005062.
- 5T. Maisch, Photochem. Photobiol. Sci. 2015, 14, 1518–1526.
- 6
- 6aF. Javed, L. P. Samaranayake, G. E. Romanos, Photochem. Photobiol. Sci. 2014, 13, 726–734;
- 6bA. Wiehe, J. M. O′Brien, M. O. Senge, Photochem. Photobiol. Sci. 2019, 18, 2565–2612;
- 6cF. Cieplik, D. M. Deng, W. Crielaard, W. Buchalla, E. Hellwig, A. Al-Ahmad, T. Maisch, Crit. Rev. Microbiol. 2018, 44, 571–589.
- 7S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, P. N. Prasad, J. Am. Chem. Soc. 2007, 129, 2669–2675.
- 8
- 8aX. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185–4219;
- 8bW. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488–6519;
- 8cS. Mallidi, S. Anbil, A. L. Bulin, G. Obaid, M. Ichikawa, T. Hasan, Theranostics 2016, 6, 2458–2487.
- 9X. Pang, Q. Xiao, Y. Cheng, E. Ren, L. Lian, Y. Zhang, H. Gao, X. Wang, W. Leung, X. Chen, G. Liu, C. Xu, ACS Nano 2019, 13, 2427–2438.
- 10X. Zhao, K.-C. Zhao, L.-J. Chen, Y.-S. Liu, J.-L. Liu, X.-P. Yan, ACS Appl. Mater. Interfaces 2020, 12, 45850–45858.
- 11P. Zhang, Q. Wu, J. Yang, M. Hou, B. Zheng, J. Xu, Y. Chai, L. Xiong, C. Zhang, Acta Biomater. 2022, 146, 450–464.
- 12
- 12aI. S. Turan, D. Yildiz, A. Turksoy, G. Gunaydin, E. U. Akkaya, Angew. Chem. Int. Ed. 2016, 55, 2875–2878;
- 12bW. Xiao, P. Wang, C. Ou, X. Huang, Y. Tang, M. Wu, W. Si, J. Shao, W. Huang, X. Dong, Biomaterials 2018, 183, 1–9;
- 12cP. De Bonfils, E. Verron, P. Nun, V. Coeffard, ChemPhotoChem 2021, 5, 847–856.
- 13C. Hopper, Lancet Oncol. 2000, 1, 212–219.
- 14J. Zou, J. Zhu, Z. Yang, L. Li, W. Fan, L. He, W. Tang, L. Deng, J. Mu, Y. Ma, Y. Cheng, W. Huang, X. Dong, X. Chen, Angew. Chem. Int. Ed. 2020, 59, 8833–8838.
- 15L. Tan, J. Li, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, Y. Zheng, X. Wang, S. Wu, Small 2018, 14, 1703197.
- 16S. Hussain, J. Joo, J. Kang, B. Kim, G. B. Braun, Z. G. She, D. Kim, A. P. Mann, T. Molder, T. Teesalu, S. Carnazza, S. Guglielmino, M. J. Sailor, E. Ruoslahti, Nat. Biomed. Eng. 2018, 2, 95–103.
- 17
- 17aP. Kinross, A. Petersen, R. Skov, E. Van Hauwermeiren, A. Pantosti, F. Laurent, A. Voss, J. Kluytmans, M. J. Struelens, O. Heuer, D. L. Monnet, M. S. G. European Human La, Eur. Surveill. 2017, 22, 32–44;
- 17bJ. Kluytmans, S. Harbarth, Lancet Infect. Dis. 2020, 20, 147–149.
- 18F. Hamilton, A. MacGowan, Nat. Microbiol. 2019, 4, 1604–1605.
- 19S. Mu, Y. Zhu, Y. Wang, S. Qu, Y. Huang, L. Zheng, S. Duan, B. Yu, M. Qin, F.-J. Xu, Adv. Mater. 2022, 34, 2204065.
- 20P. Di Mascio, G. R. Martinez, S. Miyamoto, G. E. Ronsein, M. H. G. Medeiros, J. Cadet, Chem. Rev. 2019, 119, 2043–2086.
- 21M. Zhou, Y. Qian, J. Xie, W. Zhang, W. Jiang, X. Xiao, S. Chen, C. Dai, Z. Cong, Z. Ji, N. Shao, L. Liu, Y. Wu, R. Liu, Angew. Chem. Int. Ed. 2020, 59, 6412–6419.
- 22
- 22aW. Tong, Y. Xiong, S. Duan, X. Ding, F.-J. Xu, Biomater. Sci. 2019, 7, 1905–1918;
- 22bV. Almeida-Marrero, E. van de Winckel, E. Anaya-Plaza, T. Torres, A. de la Escosura, Chem. Soc. Rev. 2018, 47, 7369–7400.
- 23Y. Zhu, W. Hong, X. Liu, L. Tan, J. Wu, C. Mao, Y. Xiang, S. Wu, K. M. C. Cheung, K. W. K. Yeung, Nanoscale 2021, 13, 15699–15710.
- 24S. Cascioferro, D. Carbone, B. Parrino, C. Pecoraro, E. Giovannetti, G. Cirrincione, P. Diana, ChemMedChem 2021, 16, 65–80.
- 25K. M. Craft, J. M. Nguyen, L. J. Berg, S. D. Townsend, MedChemComm 2019, 10, 1231–1241.
- 26Q. Jia, Q. Song, P. Li, W. Huang, Adv. Healthc. Mater. 2019, 8, 1900608.
- 27
- 27aX. Lin, J. He, W. Li, Y. Qi, H. Hu, D. Zhang, F. Xu, X. Chen, M. Zhou, ACS Nano 2021, 15, 16625–16641;
- 27bY. Zhao, Q. Guo, X. Dai, X. Wei, Y. Yu, X. Chen, C. Li, Z. Cao, X. Zhang, Adv. Mater. 2019, 31, 1806024.
- 28P. Vedak, D. Kroshinsky, J. St John, R. J. Xavier, V. Yajnik, A. N. Ananthakrishnan, Aliment. Pharmacol. Ther. 2016, 43, 697–704.
- 29H. Xu, Z. Fang, W. Tian, Y. Wang, Q. Ye, L. Zhang, J. Cai, Adv. Mater. 2018, 30, 1801100.
- 30C. Tu, H. Lu, T. Zhou, W. Zhang, L. Deng, W. Cao, Z. Yang, Z. Wang, X. Wu, J. Ding, F. Xu, C. Gao, Biomaterials 2022, 286, 121597.
- 31S. J. Wolf, W. J. Melvin, K. Gallagher, Semin. Cell Dev. Biol. 2021, 119, 111–118.
- 32C. S. Tran, Y. Eran, T. R. Ruch, D. M. Bryant, A. Datta, P. Brakeman, A. Kierbel, T. Wittmann, R. J. Metzger, K. E. Mostov, J. N. Engel, Cell Host Microbe 2014, 15, 636–643.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.