Bio-Templated Chiral Zeolitic Imidazolate Framework for Enantioselective Chemoresistive Sensing
Minkyu Kim
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Conceptualization (equal), Data curation (lead), Validation (lead), Visualization (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorMoon Jong Han
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Visualization (supporting)
Search for more papers by this authorHansol Lee
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorParaskevi Flouda
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorDaria Bukharina
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorKellina J. Pierce
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorKatarina M. Adstedt
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorMadeline L. Buxton
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorYoung Hee Yoon
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorWilliam T. Heller
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Contribution: Investigation (supporting), Validation (supporting)
Search for more papers by this authorSrikanth Singamaneni
Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO 63130 USA
Contribution: Conceptualization (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Vladimir V. Tsukruk
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Conceptualization (supporting), Funding acquisition (lead), Investigation (supporting), Project administration (lead), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorMinkyu Kim
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Conceptualization (equal), Data curation (lead), Validation (lead), Visualization (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorMoon Jong Han
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting), Visualization (supporting)
Search for more papers by this authorHansol Lee
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorParaskevi Flouda
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorDaria Bukharina
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorKellina J. Pierce
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorKatarina M. Adstedt
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorMadeline L. Buxton
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorYoung Hee Yoon
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Investigation (supporting)
Search for more papers by this authorWilliam T. Heller
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
Contribution: Investigation (supporting), Validation (supporting)
Search for more papers by this authorSrikanth Singamaneni
Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO 63130 USA
Contribution: Conceptualization (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Vladimir V. Tsukruk
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
Contribution: Conceptualization (supporting), Funding acquisition (lead), Investigation (supporting), Project administration (lead), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Chiral metal–organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF), unc-[Zn(2-MeIm)2, 2-MeIm=2-methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocelluloses via directed assembly on twisted bundles of cellulose nanocrystals. The template-grown chiral ZIF possesses tetragonal crystal structure with chiral space group of P41, which is different from traditional cubic crystal structure of I-43 m for freely grown conventional ZIF-8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 μM and the corresponding limit of chiral detection of 300 μM for representative chiral amino acid, D- and L- alanine.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supporting Information.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202305646-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Xue, C. D. Sewell, Q. Zhou, Z. Lin, Angew. Chem. Int. Ed. 2022, 134, e202206512.
- 2A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov, A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer, J. Caro, Science 2017, 358, 347–351.
- 3F. Carraro, J. D. Williams, M. Linares-Moreau, C. Parise, W. Liang, H. Amenitsch, C. Doonan, C. O. Kappe, P. Falcaro, Angew. Chem. 2020, 132, 8200–8204.
10.1002/ange.202000678 Google Scholar
- 4C. Wang, G. Sudlow, Z. Wang, S. Cao, Q. Jiang, A. Neiner, J. J. Morrissey, E. D. Kharasch, S. Achilefu, S. Singamaneni, Adv. Healthcare Mater. 2018, 7, 1800950.
- 5R. A. Perlata, M. T. Huxley, Z. Shi, Y.-B. Zhang, C. J. Sumby, C. J. Doonan, Chem. Commun. 2020, 56, 15313–15316.
- 6C. Herbert, S. S. Abeyrathna, N. S. Abeyrathna, Y. H. Wijesundara, O. R. Brohlin, F. Carraro, H. Amenitsch, P. Falcaro, M. A. Luzuriaga, A. Durand-Silva, S. D. Diwakara, R. A. Smaldone, G. Meloni, J. J. Gassensmith, Nat. Commun. 2021, 12, 2202.
- 7Z. Chen, M. R. Mian, S.-J. Lee, H. Chen, X. Zhang, K. O. Kirlikovali, S. Shulda, P. Melix, A. S. Rosen, P. A. Parilla, T. Gennett, R. Q. Snurr, T. Islamoglu, T. Yildirim, O. K. Farha, J. Am. Chem. Soc. 2021, 143, 18838–18843.
- 8S.-H. Yang, R. Naaman, Y. Paltiel, S. S. P. Parkin, Nat. Rev. Phys. 2021, 3, 328–343.
- 9M. Kim, V. V. Tsukruk, Nat. Photonics 2022, 16, 337–338.
- 10L. Pasteur, Acad. Sci. Paris 1848, 26, 535–538.
- 11B. Ni, H. Cölfen, SmartMat 2021, 2, 17–32.
- 12V. Sharma, M. Crne, J. O. Park, M. Srinivasarao, Science 2009, 325, 449–451.
- 13S. Kinoshita, S. Yoshioka, J. Miyazaki, Rep. Prog. Phys. 2008, 71, 076401.
- 14R. Xiong, J. Luan, S. Kang, C. Ye, S. Singamaneni, V. V. Tsukruk, Chem. Soc. Rev. 2020, 49, 983–1031.
- 15D. Kennedy, C. Norman, Science 2005, 309, 75.
- 16Z. Sharifzadeh, K. Berijani, A. Morsali, Coord. Chem. Rev. 2021, 445, 214083.
- 17R. E. Morris, X. Bu, Nat. Chem. 2010, 2, 353–361.
- 18Q.-Y. Liu, W.-L. Xiong, C.-M. Liu, Y.-L. Wang, J.-J. Wei, Z.-J. Xiahou, L.-H. Xiong, Inorg. Chem. 2013, 52, 6773–6775.
- 19W. Meng, S. Kondo, T. Ito, K. Komatsu, J. Pirillo, Y. Hijikata, Y. Ikuhara, T. Aida, H. Sato, Nature 2021, 598, 298–303.
- 20L. Tong, S. Huang, Y. Shen, S. Liu, X. Ma, F. Zhu, G. Chen, G. Ouyang, Nat. Commun. 2022, 13, 951.
- 21S. Huang, G. Chen, G. Ouyang, Chem. Soc. Rev. 2022, 51, 6824–6863.
- 22S. Liu, L. Han, Y. Duan, S. Asahina, O. Terasaki, Y. Cao, B. Liu, L. Ma, J. Zhang, S. Che, Nat. Commun. 2012, 3, 1215.
- 23J. J. Richardson, B. L. Tardy, J. Guo, K. Liang, O. J. Rojas, H. Ejima, ACS Sustainable Chem. Eng. 2019, 7, 6287–6294.
- 24X. Liu, Y. Xiao, Z. Zhang, Z. You, J. Li, D. Ma, B. Li, Chin. J. Chem. 2021, 39, 3462–3480.
- 25M. Kim, H. Lee, M. C. Krecker, D. Bukharina, D. Nepal, T. J. Bunning, V. V. Tsukruk, Adv. Mater. 2021, 33, 2103674.
- 26M. Giese, L. K. Blusch, M. K. Khan, M. J. MacLachlan, Angew. Chem. Int. Ed. 2015, 54, 2888–2910.
- 27M. Chekini, E. Prince, L. Zhao, H. Mundoor, I. I. Smalyukh, E. Kumacheva, Adv. Opt. Mater. 2020, 8, 1901911.
- 28T. O′brien, L. Crocker, R. Thompson, K. Thompson, P. Toma, D. Conlon, B. Feibush, C. Moeder, G. Bicker, N. Grinberg, Anal. Chem. 1997, 69, 1999–2007.
- 29M. Schlesinger, M. Giese, L. K. Blusch, W. Y. Hamad, M. J. MacLachlan, Chem. Commun. 2015, 51, 530–533.
- 30C. M. Walters, K. R. Adair, W. Y. Hamad, M. J. MacLachlan, Eur. J. Inorg. Chem. 2020, 2020, 3937–3943.
- 31H. Qi, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, J. Am. Chem. Soc. 2011, 133, 3728–3731.
- 32J. Zhang, S. Chen, R. A. Nieto, T. Wu, P. Feng, X. Bu, Angew. Chem. Int. Ed. 2010, 49, 1267–1270.
- 33Y. Kang, S. Chen, F. Wang, J. Zhang, X. Bu, Chem. Commun. 2011, 47, 4950–4952.
- 34J. Zhang, S. Chen, T. Wu, P. Feng, X. Bu, J. Am. Chem. Soc. 2008, 130, 12882–12883.
- 35L. Lei, F. Pan, A. Lindbråthen, X. Zhang, M. Hillestad, Y. Nie, L. Bai, X. He, M. D. Guiver, Nat. Commun. 2021, 12, 268.
- 36H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519–1537.
- 37A. S. Spitsyna, A. S. Poryvaev, N. E. Sannikova, A. A. Yazikova, I. A. Kirilyuk, S. A. Dobrynin, O. A. Chinak, M. V. Fedin, O. A. Krumkacheva, Molecules 2022, 27, 3240.
- 38Y. Zhang, Y. Jia, M. Li, L. a. Hou, Sci. Rep. 2018, 8, 9597.
- 39L. T. Kuhn, K. Motiram-Corral, T. J. Athersuch, T. Parella, M. Pérez-Trujillo, Angew. Chem. Int. Ed. 2020, 59, 23615–23619.
- 40M. Pérez-Trujillo, E. Monteagudo, T. Parella, Anal. Chem. 2013, 85, 10887–10894.
- 41H. T. Kwon, H.-K. Jeong, A. S. Lee, H. S. An, J. S. Lee, J. Am. Chem. Soc. 2015, 137, 12304–12311.
- 42K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, J. Am. Chem. Soc. 2012, 134, 867–870.
- 43A. Alanis, J. H. Valdés, N.-V. María Guadalupe, R. Lopez, R. Mendoza, A. P. Mathew, R. Díaz de León, L. Valencia, RSC Adv. 2019, 9, 17417–17424.
- 44R. L. Papurello, L. A. Lozano, E. V. Ramos-Fernández, J. L. Fernández, J. M. Zamaro, ChemPhysChem 2019, 20, 3201–3209.
- 45S. Gadipelli, W. Travis, W. Zhou, Z. Guo, Energy Environ. Sci. 2014, 7, 2232–2238.
- 46K. Adstedt, E. A. Popenov, K. J. Pierce, R. Xiong, R. Geryak, V. Cherpak, D. Nepal, T. J. Bunning, V. V. Tsukruk, Adv. Funct. Mater. 2020, 30, 2003597.
- 47V. F. Korolovych, V. Cherpak, D. Nepal, A. Ng, N. R. Shaikh, A. Grant, R. Xiong, T. J. Bunning, V. V. Tsukruk, Polymer 2018, 145, 334–347.
- 48Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 2002, 124, 9074–9082.
- 49C. Avci, I. Imaz, A. Carné-Sánchez, J. A. Pariente, N. Tasios, J. Pérez-Carvajal, M. I. Alonso, A. Blanco, M. Dijkstra, C. López, D. Maspoch, Nat. Chem. 2018, 10, 78–84.
- 50K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, Proc. Nat. Acad. Sci. 2006, 103, 10186–10191.
- 51B. Tiţa, A. Fuliaş, G. Bandur, E. Marian, D. Tiţa, J. Pharm. Biomed. Anal. 2011, 56, 221–227.
- 52CCDC deposition number: 866423.
- 53CCDC deposition number: 2264401.
- 54U. Holzwarth, N. Gibson, Nat. Nanotechnol. 2011, 6, 534.
- 55M. Rudolph, M. Motylenko, D. Rafaja, IUCrJ 2019, 6, 116–127.
- 56A. Matsumoto, H. Ozaki, S. Tsuchiya, T. Asahi, M. Lahav, T. Kawasaki, K. Soai, Org. Biomol. Chem. 2019, 17, 4200–4203.
- 57B.-Q. Song, D.-Q. Chen, Z. Ji, J. Tang, X.-L. Wang, H.-Y. Zang, Z.-M. Su, Chem. Commun. 2017, 53, 1892–1895.
- 58T. G. Parton, R. M. Parker, G. T. van de Kerkhof, A. Narkevicius, J. S. Haataja, B. Frka-Petesic, S. Vignolini, Nat. Commun. 2022, 13, 2657.
- 59T. Zhao, J. Han, X. Jin, Y. Liu, M. Liu, P. Duan, Angew. Chem. Int. Ed. 2019, 58, 4978–4982.
- 60S. C. Gad, Pharmaceutical sciences encyclopedia: drug discovery, development, and manufacturing, John Wiley & Sons, 2010.
10.1002/9780470571224 Google Scholar
- 61W. Feng, J.-Y. Kim, X. Wang, H. A. Calcaterra, Z. Qu, L. Meshi, N. A. Kotov, Sci. Adv. 2017, 3, e1601159.
- 62D. Qu, H. Zheng, H. Jiang, Y. Xu, Z. Tang, Adv. Opt. Mater. 2019, 7, 1801395.
- 63L. He, L. Yang, M. Dincă, R. Zhang, J. Li, Angew. Chem. Int. Ed. 2020, 59, 9773–9779.
- 64J. Van Rie, G. González-Rubio, S. Kumar, C. Schütz, J. Kohlbrecher, M. Vanroelen, T. Van Gerven, O. Deschaume, C. Bartic, L. M. Liz-Marzán, Chem. Commun. 2020, 56, 13001–13004.
- 65C. Schütz, M. Agthe, A. B. Fall, K. Gordeyeva, V. Guccini, M. Salajková, T. S. Plivelic, J. P. F. Lagerwall, G. Salazar-Alvarez, L. Bergström, Langmuir 2015, 31, 6507–6513.
- 66J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 2011, 23, 2130–2141.
- 67C. Do, W. T. Heller, C. Stanley, F. X. Gallmeier, M. Doucet, G. S. Smith, Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 737, 42–46.
- 68Y. Ren, X. Zuo, Small Methods 2018, 2, 1800064.
- 69J. S. Pedersen, Adv. Colloid Interface Sci. 1997, 70, 171–210.
- 70M. Zhan, S. Hussain, T. S. AlGarni, S. Shah, J. Liu, X. Zhang, A. Ahmad, M. S. Javed, G. Qiao, G. Liu, Mater. Res. Bull. 2021, 136, 111133.
- 71H. V. T. Nguyen, Y. Jiang, S. Mohapatra, W. Wang, J. C. Barnes, N. J. Oldenhuis, K. K. Chen, S. Axelrod, Z. Huang, Q. Chen, M. R. Golder, K. Young, D. Suvlu, Y. Shen, A. P. Willard, M. J. A. Hore, R. Gómez-Bombarelli, J. A. Johnson, Nat. Chem. 2022, 14, 85–93.
- 72W. H. Brooks, W. C. Guida, K. G. Daniel, Curr. Trends Med. Chem. 2011, 11, 760–770.
- 73J. Peng, Z. Zhang, C. Hu, Z. Wang, Y. Kang, W. Chen, T. Ao, J. Sol-Gel Sci. Technol. 2021, 99, 339–353.
- 74E. M. Mahdi, J.-C. Tan, Polymer 2016, 97, 31–43.
- 75F. Temel, S. Erdemir, B. Tabakci, M. Akpinar, M. Tabakci, Anal. Bioanal. Chem. 2019, 411, 2675–2685.
- 76Q. Zhao, J. Yang, J. Zhang, D. Wu, Y. Tao, Y. Kong, Anal. Chem. 2019, 91, 12546–12552.
- 77M. Ikeda, S. Takeno, in Corynebacterium glutamicum, Springer, 2013, pp. 107–147.
10.1007/978-3-642-29857-8_4 Google Scholar
- 78P. Hols, M. Kleerebezem, A. N. Schanck, T. Ferain, J. Hugenholtz, J. Delcour, W. M. de Vos, Nat. Biotechnol. 1999, 17, 588–592.
- 79G. Indrayanto, in Profiles of Drug Substances, Excipients and Related Methodology, Vol. 43 (Ed.: H. G. Brittain), Academic Press, 2018, pp. 359–392.
- 80N. Patel, P. Shukla, P. Lama, S. Das, T. K. Pal, Cryst. Growth Des. 2022, 22, 3518–3564.
- 81Y.-W. Zhao, Y. Wang, X.-M. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 20991–20999.
- 82V. Nozari, C. Calahoo, J. M. Tuffnell, D. A. Keen, T. D. Bennett, L. Wondraczek, Nat. Commun. 2021, 12, 5703.
- 83J. Li, B. Liu, X. Zhang, D. Cao, G. Chen, J. Phys. Chem. C 2017, 121, 25347–25352.
- 84S. Rodríguez, L. Makinistian, E. Albanesi, Appl. Surf. Sci. 2017, 419, 540–545.
- 85X. Shang, C. H. Park, G. Y. Jung, S. K. Kwak, J. H. Oh, ACS Appl. Mater. Interfaces 2018, 10, 36194–36201.
- 86R. S. Mulliken, J. Chem. Phys. 1955, 23, 1841–1846.
- 87M. Aslanoglu, C. J. Isaac, A. Houlton, B. R. Horrocks, Analyst 2000, 125, 1791–1798.
- 88R. K. Boggess, D. A. Zatko, J. Chem. Educ. 1975, 52, 649.
- 89S. Cruz-León, N. Schwierz, Langmuir 2020, 36, 5979–5989.
- 90Y. Yu, L. Ren, M. Liu, S. Huang, X. Xiao, R. Liu, L. Wang, W. Xu, ACS Appl. Mater. Interfaces 2019, 11, 31291–31301.
- 91A. Xin, Y. Su, S. Feng, M. Yan, K. Yu, Z. Feng, K. Hoon Lee, L. Sun, Q. Wang, Adv. Mater. 2021, 33, 2006946.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.