Complexes Featuring a cis-[M
U
M] Core (M=Rh, Ir): A New Route to Uranium-Metal Multiple Bonds
Jinghang Shen
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorThayalan Rajeshkumar
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorGenfeng Feng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYue Zhao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorShuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD−X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
Search for more papers by this authorCorresponding Author
Laurent Maron
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Congqing Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorJinghang Shen
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorThayalan Rajeshkumar
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorGenfeng Feng
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYue Zhao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorShuao Wang
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD−X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
Search for more papers by this authorCorresponding Author
Laurent Maron
LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Congqing Zhu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorAbstract
Although examples of multiple bonds between actinide elements and main-group elements are quite common, studies of the multiple bonds between actinide elements and transition metals are extremely rare owing to difficulties associated with their synthesis. Here we report the first example of molecular uranium complexes featuring a cis-[M
U
M] core (M=Rh, Ir), which exhibits an unprecedented arrangement of two M
U double dative bond linkages to a single U center. These complexes were prepared by the reactions of chlorine-bridged heterometallic complexes [{U{N(CH3)(CH2CH2NPiPr2)2}(Cl)2[(μ-Cl)M(COD)]2}] (M=Rh, Ir) with MeMgBr or MeLi, a new method for the construction of species with U−M multiple bonds. Theoretical calculations including dispersion confirmed the presence of two U
M double dative bonds in these complexes. This study not only enriches the U
M multiple bond chemistry, but also provides a new opportunity to explore the bonding of actinide elements.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202303379-sup-0001-2a-checkcif.pdf95.9 KB | Supporting Information |
ange202303379-sup-0001-2b-checkcif.pdf96.3 KB | Supporting Information |
ange202303379-sup-0001-3a-checkcif.pdf97.4 KB | Supporting Information |
ange202303379-sup-0001-3b-checkcif.pdf98.4 KB | Supporting Information |
ange202303379-sup-0001-4-checkcif.pdf103.1 KB | Supporting Information |
ange202303379-sup-0001-E-checkcif.pdf139.4 KB | Supporting Information |
ange202303379-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. R. Schrock, Chem. Rev. 2002, 102, 145;
- 1bD. J. Mindiola, Acc. Chem. Res. 2006, 39, 813;
- 1cC.-M. Che, C. M. Ho, J.-S. Huang, Coord. Chem. Rev. 2007, 251, 2145;
- 1dA. Gunay, K. H. Theopold, Chem. Rev. 2010, 110, 1060;
- 1eJ. M. Smith, Prog. Inorg. Chem. 2014, 58, 417;
- 1fJ. R. Dilworth, Coord. Chem. Rev. 2017, 330, 53;
- 1gC. Zhu, H. Xia, Acc. Chem. Res. 2018, 51, 1691;
- 1hK. Kawakita, B. F. Parker, Y. Kakiuchi, H. Tsurugi, K. Mashima, J. Arnold, I. A. Tonks, Coord. Chem. Rev. 2020, 407, 213118.
- 2
- 2aG. Bombieri, E. Forsellini, J. P. Day, W. I. Azeez, J. Chem. Soc. Dalton Trans. 1978, 677;
- 2bW. J. Oldham, Jr., S. M. Oldham, W. H. Smith, D. A. Costa, B. L. Scott, K. D. Abney, Chem. Commun. 2001, 1348;
- 2cS. A. Mungur, S. T. Liddle, C. Wilson, M. J. Sarsfield, P. L. Arnold, Chem. Commun. 2004, 2738;
- 2dP. L. Arnold, I. J. Casely, Z. R. Turner, C. D. Carmichael, Chem. Eur. J. 2008, 14, 10415;
- 2eA. K. Maity, R. J. Ward, Y. P. R. D. M. Rupasinghe, M. Zeller, J. R. Walensky, S. C. Bart, Organometallics 2020, 39, 783.
- 3Examples for [N=U=N] core:
- 3aD. S. J. Arney, C. J. Burns, D. C. Smith, J. Am. Chem. Soc. 1992, 114, 10068;
- 3bD. S. J. Arney, C. J. Burns, J. Am. Chem. Soc. 1995, 117, 9448;
- 3cB. P. Warner, B. L. Scott, C. J. Burns, Angew. Chem. Int. Ed. 1998, 37, 959;
10.1002/(SICI)1521-3773(19980420)37:7<959::AID-ANIE959>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 3dR. G. Peters, B. P. Warner, C. J. Burns, J. Am. Chem. Soc. 1999, 121, 5585;
- 3eJ. L. Kiplinger, D. E. Morris, B. L. Scott, C. J. Burns, Chem. Commun. 2002, 30;
- 3fT. W. Hayton, J. M. Boncella, B. L. Scott, P. D. Palmer, E. R. Batista, P. J. Hay, Science 2005, 310, 1941;
- 3gT. W. Hayton, J. M. Boncella, B. L. Scott, E. R. Batista, J. Am. Chem. Soc. 2006, 128, 12622;
- 3hL. P. Spencer, R. L. Gdula, T. W. Hayton, B. L. Scott, J. M. Boncella, Chem. Commun. 2008, 4986;
- 3iD. L. Swartz II, L. P. Spencer, B. L. Scott, A. L. Odom, J. M. Boncella, Dalton Trans. 2010, 39, 6841;
- 3jR. E. Jilek, L. P. Spencer, R. A. Lewis, B. L. Scott, T. W. Hayton, J. M. Boncella, J. Am. Chem. Soc. 2012, 134, 9876;
- 3kC. Camp, J. Pécaut, M. Mazzanti, J. Am. Chem. Soc. 2013, 135, 12101;
- 3lL. P. Spencer, P. Yang, S. G. Minasian, R. E. Jilek, E. R. Batista, K. S. Boland, J. M. Boncella, S. D. Conradson, D. L. Clark, T. W. Hayton, S. A. Kozimor, R. L. Martin, M. M. Maclnnes, A. C. Olson, B. L. Scott, D. K. Shuh, M. P. Wilkerson, J. Am. Chem. Soc. 2013, 135, 2279;
- 3mN. H. Anderson, S. O. Odoh, Y. Y. Yao, U. J. Williams, B. A. Schaefer, J. J. Kiernicki, A. J. Lewis, M. D. Goshert, P. E. Fanwick, E. J. Schelter, J. R. Walensky, L. Gagliardi, S. C. Bart, Nat. Chem. 2014, 6, 919;
- 3nN. H. Anderson, H. Yin, J. J. Kiernicki, P. E. Fanwick, E. J. Schelter, S. C. Bart, Angew. Chem. Int. Ed. 2015, 54, 9386;
- 3oJ. J. Kiernicki, M. G. Ferrier, J. S. Lezama Pacheco, H. S. La Pierre, B. W. Stein, M. Zeller, S. A. Kozimor, S. C. Bart, J. Am. Chem. Soc. 2016, 138, 13941;
- 3pL. Zhang, G. Hou, G. Zi, W. Ding, M. D. Walter, J. Am. Chem. Soc. 2016, 138, 5130;
- 3qN. H. Anderson, J. Xie, D. Ray, M. Zeller, L. Gagliardi, S. C. Bart, Nat. Chem. 2017, 9, 850;
- 3rP. Rungthanaphatsophon, C. L. Barnes, S. P. Kelley, J. R. Walensky, Dalton Trans. 2018, 47, 8189;
- 3sL. Barluzzi, L. Chatelain, F. Fadaei-Tirani, I. Zivkovic, M. Mazzanti, Chem. Sci. 2019, 10, 3543;
- 3tS. S. Rudel, H. L. Deubner, M. Muller, A. J. Karttunen, F. Kraus, Nat. Chem. 2020, 12, 962;
- 3uR. J. Ward, I. D. Rosal, D. N. Chirdon, S. P. Kelley, M. L. Tarlton, L. Maron, J. R. Walensky, Inorg. Chem. 2020, 59, 16137;
- 3vT. S. Collins, C. Celis-Barros, M. J. Beltrán-Leiva, N. H. Anderson, M. Zeller, T. Albrecht-Schönzart, S. C. Bart, Inorg. Chem. 2020, 59, 18461;
- 3wN. Jori, L. Barluzzi, I. Douair, L. Maron, F. Fadaei-Tirani, I. Zivkovic, M. Mazzanti, J. Am. Chem. Soc. 2021, 143, 11225;
- 3xL. Barluzzi, F.-C. Hsueh, R. Scopelliti, B. E. Atkinson, N. Kaltsoyannis, M. Mazzanti, Chem. Sci. 2021, 12, 8096;
- 3yN. Jori, T. Rajeshkumar, R. Scopelliti, I. Živković, A. Sienkiewicz, L. Maron, M. Mazzanti, Chem. Sci. 2022, 13, 9232;
- 3zM. Keener, F. Fadaei-Tirani, R. Scopelliti, I. Zivkovic, M. Mazzanti, Chem. Sci. 2022, 13, 8025.
- 4Examples for [C=U=C] core:
- 4aT. Cantat, T. Arliguie, A. Noël, P. Thuéry, M. Ephritikhine, P. L. Floch, N. Mézailles, J. Am. Chem. Soc. 2009, 131, 963;
- 4bO. J. Cooper, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Dalton Trans. 2010, 39, 5074;
- 4cJ.-C. Tourneux, J.-C. Berthet, P. Thuéry, N. Mézailles, P. L. Flochb, M. Ephritikhine, Dalton Trans. 2010, 39, 2494;
- 4dD. P. Mills, F. Moro, J. McMaster, S. J. Van, W. Lewis, A. J. Blake, S. T. Liddle, Nat. Chem. 2011, 3, 454;
- 4eM. Gregson, E. Lu, D. P. Mills, F. Tuna, J. L. E. McInnes, C. Hennig, A. C. Scheinost, J. McMaster, W. Lewis, A. J. Blake, A. Kerridge, S. T. Liddle, Nat. Commun. 2017, 8, 14137;
- 4fW. Su, S. Pan, X. Sun, S. Wang, L. Zhao, G. Frenking, C. Zhu, Nat. Commun. 2018, 9, 4997;
- 4gE. Lu, J. T. Boronski, M. Gregson, A. J. Wooles, S. T. Liddle, Angew. Chem. Int. Ed. 2018, 57, 5506;
- 4hW. Fang, S. Pan, W. Su, S. Wang, L. Zhao, G. Frenking, C. Zhu, CCS Chem. 2021, 3, 2324.
- 5Examples for [C=U=E] (E = O, N) core:
- 5aM. Zhou, L. Andrews, J. Li, B. E. Bursten, J. Am. Chem. Soc. 1999, 121, 9712;
- 5bJ. Li, B. E. Bursten, B. Liang, L. Andrews, Science 2002, 295, 2242;
- 5cL. Andrews, B. Liang, J. Li, B. E. Bursten, J. Am. Chem. Soc. 2003, 125, 3126;
- 5dD. P. Mills, O. J. Cooper, F. Tuna, E. J. L. McInnes, E. S. Davies, J. McMaster, F. Moro, W. Lewis, A. J. Blake, S. T. Liddle, J. Am. Chem. Soc. 2012, 134, 10047;
- 5eE. Lu, O. J. Cooper, J. McMaster, F. Tuna, E. J. L. McInnes, W. Lewis, A. J. Blake, S. T. Liddle, Angew. Chem. Int. Ed. 2014, 53, 6696;
- 5fE. Lu, O. J. Cooper, F. Tuna, A. J. Wooles, Chem. Eur. J. 2016, 22, 11559;
- 5gE. Lu, S. Sajjad, V. E. J. Berryman, A. J. Wooles, N. Kaltsoyannis, S. T. Liddle, Nat. Commun. 2019, 10, 634.
- 6Examples for [O=U=E] (E = N, S, Se) core:
- 6aD. S. J. Arney, C. J. Burns, J. Am. Chem. Soc. 1993, 115, 9840;
- 6bS. Fortier, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2010, 132, 6888;
- 6cJ.-C. Tourneux, J.-C. Berthet, T. Cantat, P. Thuéry, N. Mézailles, M. Ephritikhine, J. Am. Chem. Soc. 2011, 133, 6162;
- 6dJ. L. Brown, S. Fortier, G. Wu, N. Kaltsoyannis, T. W. Hayton, J. Am. Chem. Soc. 2013, 135, 5352;
- 6eJ. K. Pagano, D. S. J. Arney, B. L. Scott, D. E. Morris, J. L. Kiplinger, C. J. Burns, Dalton Trans. 2019, 48, 50.
- 7
- 7aR. K. Thomson, T. Cantat, B. L. Scott, D. E. Morris, E. R. Batista, J. L. Kiplinger, Nat. Chem. 2010, 2, 723;
- 7bA. R. Fox, P. L. Arnold, C. C. Cummins, J. Am. Chem. Soc. 2010, 132, 3250;
- 7cD. M. King, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Science 2012, 337, 717;
- 7dB. M. Gardner, G. Balazs, M. Scheer, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Nat. Chem. 2015, 7, 582;
- 7eE. Lu, B. E. Atkinson, A. J. Wooles, J. T. Boronski, L. R. Doyle, F. Tuna, J. D. Cryer, P. J. Cobb, I. J. Vitorica-Yrezabal, G. F. S. Whitehead, N. Kaltsoyannis, S. T. Liddle, Nat. Chem. 2019, 11, 806;
- 7fL. Barluzzi, R. Scopelliti, M. Mazzanti, J. Am. Chem. Soc. 2020, 142, 19047;
- 7gM. Yadav, A. Metta-Magaña, S. Fortier, Chem. Sci. 2020, 11, 2381;
- 7hY. Wang, S.-X. Hu, L. Cheng, C. Liang, X. Yin, H. Zhang, A. Li, D. Sheng, J. Diwu, X. Wang, J. Li, Z. Chai, S. Wang, CCS Chem. 2020, 2, 425;
- 7iD. M. Ramitha, Y. P. Rupasinghe, M. R. Baxter, H. Gupta, A. T. Poore, R. F. Higgins, M. Zeller, S. Tian, E. J. Schelter, S. C. Bart, J. Am. Chem. Soc. 2022, 144, 17423.
- 8
- 8aG. Feng, M. Zhang, D. Shao, X. Wang, S. Wang, L. Maron, C. Zhu, Nat. Chem. 2019, 11, 248;
- 8bG. Feng, M. Zhang, P. Wang, S. Wang, L. Maron, C. Zhu, Proc. Natl. Acad. Sci. USA 2019, 116, 17654;
- 8cG. Feng, K. N. McCabe, S. Wang, L. Maron, C. Zhu, Chem. Sci. 2020, 11, 7585;
- 8dX. Xin, I. Douair, Y. Zhao, S. Wang, L. Maron, C. Zhu, J. Am. Chem. Soc. 2020, 142, 15004;
- 8eK. Shi, I. Douair, G. Feng, P. Wang, Y. Zhao, L. Maron, C. Zhu, J. Am. Chem. Soc. 2021, 143, 5998;
- 8fX. Sun, C. Zhu, Chin. Chem. Lett. 2021, 32, 717;
- 8gW. Fang, I. Douair, A. Hauser, K. Li, Y. Zhao, P. W. Roesky, S. Wang, L. Maron, C. Zhu, CCS Chem. 2021, 3, 3268;
- 8hP. Wang, I. Douair, Y. Zhao, S. Wang, J. Zhu, L. Maron, C. Zhu, Angew. Chem. Int. Ed. 2021, 60, 473;
- 8iX. Sun, X. Gong, Z. Xie, C. Zhu, Chin. J. Chem. 2022, 40, 2047;
- 8jX. Xin, I. Douair, Y. Zhao, S. Wang, L. Maron, C. Zhu, Natl. Sci. Rev. 2023, 10, nwac144;
- 8kP. Wang, I. Douair, Y. Zhao, R. Ge, J. Wang, S. Wang, L. Maron, C. Zhu, Chem 2022, 8, 1361;
- 8lQ. Zhu, W. Fang, L. Maron, C. Zhu, Acc. Chem. Res. 2022, 55, 1718.
- 9
- 9aS. G. Minasian, J. L. Krinsky, V. A. Williams, J. Arnold, J. Am. Chem. Soc. 2008, 130, 10086;
- 9bS. G. Minasian, J. L. Krinsky, J. D. Rinehart, R. Copping, T. Tyliszczak, M. Janousch, D. K. Shuh, J. Arnold, J. Am. Chem. Soc. 2009, 131, 13767;
- 9cD. Patel, F. Moro, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Angew. Chem. Int. Ed. 2011, 50, 10388;
- 9dJ. W. Napoline, S. J. Kraft, E. M. Matson, P. E. Fanwick, S. C. Bart, C. M. Thomas, Inorg. Chem. 2013, 52, 12170;
- 9eA. L. Ward, W. W. Lukens, C. C. Lu, J. Arnold, J. Am. Chem. Soc. 2014, 136, 3647;
- 9fJ. A. Hlina, J. R. Pankhurst, N. Kaltsoyannis, P. L. Arnold, J. Am. Chem. Soc. 2016, 138, 3333;
- 9gS. Fortier, J. R. Aguilar-Calderon, B. Vlaisavljevich, A. J. Metta-Magana, A. G. Goos, C. E. Botez, Organometallics 2017, 36, 4591;
- 9hA. J. Ayres, M. Zegke, J. P. Ostrowski, F. Tuna, E. J. McInnes, A. J. Wooles, S. T. Liddle, Chem. Commun. 2018, 54, 13515;
- 9iW. Fang, Q. Zhu, C. Zhu, Chem. Soc. Rev. 2022, 51, 8434.
- 10C. Chi, J.-Q. Wang, H. Qu, W.-L. Li, L. Meng, M. Luo, J. Li, M. Zhou, Angew. Chem. Int. Ed. 2017, 56, 6932.
- 11E. Lu, A. J. Wooles, M. Gregson, P. J. Cobb, S. T. Liddle, Angew. Chem. Int. Ed. 2018, 57, 6587.
- 12X. Xin, I. Douair, T. Rajeshkumar, Y. Zhao, S. Wang, L. Maron, C. Zhu, Nat. Commun. 2022, 13, 3809.
- 13
- 13aK. Isobe, D. G. Andrews, B. E. Mann, P. M. Maitlis, J. Chem. Soc. Chem. Commun. 1981, 809;
- 13bJ. W. Park, P. B. Mackenzie, W. P. Schaefer, R. H. Grubbs, J. Am. Chem. Soc. 1986, 108, 6402.
- 14Deposition Numbers 2191617 (for 2a), 2191618 (for 2b), 2191616 (for 3a), 2191620 (for 3b), 2191619 (for 4), and 2246542 (for E) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 15P. Pyykkö, J. Phys. Chem. A 2015, 119, 2326.
- 16
- 16aL. Gagliardi, P. Pyykkö, Angew. Chem. Int. Ed. 2004, 43, 1573;
- 16bM. Santos, J. Marcalo, A. P. de Matos, J. K. Gibson, R. G. Haire, Eur. J. Inorg. Chem. 2006, 3346;
- 16cP. Pyykkö, W.-H. Xu, Chem. Eur. J. 2015, 21, 9468.
- 17
- 17aS. Fortier, B. C. Melot, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2009, 131, 15512;
- 17bJ. D. Sears, D.-C. Sergentu, T. M. Baker, W. M. Brennessel, J. Autschbach, M. L. Neidig, Angew. Chem. Int. Ed. 2020, 59, 13586.
- 18J. A. Hlina, J. A. L. Wells, J. R. Pankhurst, J. B. Love, P. L. Arnold, Dalton Trans. 2017, 46, 5540.
- 19
- 19aD. R. Kindra, W. J. Evans, Chem. Rev. 2014, 114, 8865;
- 19bJ. A. Seed, L. Birnoschi, E. Lu, F. Tuna, A. J. Wooles, N. F. Chilton, S. T. Liddle, Chem 2021, 7, 1666.
- 20D. M. King, P. A. Cleaves, A. J. Wooles, B. M. Gardner, N. F. Chilton, F. Tuna, W. Lewis, E. J. L. McInnes, S. T. Liddle, Nat. Commun. 2016, 7, 13773.
- 21
- 21aB. Wu, M. W. Bezpalko, B. M. Foxman, C. M. Thomas, Chem. Sci. 2015, 6, 2044–2049;
- 21bB. Wu, K. M. Gramigna, M. W. Bezpalko, B. M. Foxman, C. M. Thomas, Inorg. Chem. 2015, 54, 10909.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.