Covalently Linked Hexakis(m-Phenylene Ethynylene) Macrocycles as Molecular Nanotubes
Cheng-Yan Wu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorShilong Su
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorXi Zhang
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Rui Liu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorBing Gong
Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260 USA
Search for more papers by this authorCorresponding Author
Zhong-Lin Lu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCheng-Yan Wu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorShilong Su
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorXi Zhang
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorCorresponding Author
Rui Liu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorBing Gong
Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260 USA
Search for more papers by this authorCorresponding Author
Zhong-Lin Lu
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
Search for more papers by this authorAbstract
The construction of nanotubular structures with non-deformable inner pores is of both fundamental and practical significance. Herein we report a strategy for creating molecular nanotubes with defined lengths. Macrocyclic (MC) units based on shape-persistent hexakis(m-phenylene ethynylene) (m-PE) macrocycle MC-1, which are known to stack into hydrogen-bonded tubular assemblies, are tethered by oligo(β-alanine) linkers to give tubular stacks MC-2 and MC-4 that have two and four MC units, respectively. The covalently linked MC units in MC-2 and MC-4 undergo face-to-face stacking through intramolecular non-covalent interactions that further results in the helical stacks of these compounds. Oligomer MC-4 can form potassium and proton channels across lipid bilayers, with the channels being open continuously for over 60 seconds, which is among the longest open durations for synthetic ion channels and indicates that the thermodynamic stability of the self-assembling channels can be drastically enhanced by reducing the number of molecular components involved. This study demonstrates that covalently tethering shape-persistent macrocyclic units is a feasible and reliable approach for building molecular nanotubes that otherwise are difficult to create de novo. The extraordinarily long lifetimes of the ion channels formed by MC-2 and MC-4 suggest the likelihood of constructing the next-generation synthetic ion channels with unprecedented stability.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202303242-sup-0001-misc_information.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. B. Hladky, D. A. Haydon, Nature 1970, 225, 451–453;
- 1bJ. Li, Y. Long, G. N. Qi, J. Li, Z. J. Xu, W. H. Wu, Y. Wang, Plant Cell 2014, 26, 3387–3402;
- 1cF. Liu, Z. Zhang, L. Csanady, D. C. Gadsby, J. Chen, Cell 2017, 169, 85–95;
- 1dJ. I. Vandenberg, M. D. Perry, M. J. Perrin, S. A. Mann, Y. Ke, A. P. Hill, Physiol. Rev. 2012, 92, 1393–1478;
- 1eB. J. Pieters, M. B. van Eldijk, R. J. Nolte, J. Mecinovic, Chem. Soc. Rev. 2016, 45, 24–39.
- 2
- 2aT. Shimizu, W. Ding, N. Kameta, Chem. Rev. 2020, 120, 2347–2407;
- 2bZ. J. Yan, Y. W. Li, M. Yang, Y. H. Fu, R. Wen, W. Wang, Z. T. Li, Y. Zhang, J. L. Hou, J. Am. Chem. Soc. 2021, 143, 11332–11336;
- 2cM. J. Langton, Nat. Chem. Rev. 2021, 5, 46–61;
- 2dP. B. Chamorro, F. Aparicio, Chem. Commun. 2021, 57, 12712–12724;
- 2eA. Roy, J. Shen, H. Joshi, W. Song, Y. M. Tu, R. Chowdhury, R. Ye, N. Li, C. Ren, M. Kumar, A. Aksimentiev, H. Zeng, Nat. Nanotechnol. 2021, 16, 911–917;
- 2fJ. Shen, G. Liu, Y. Han, W. Jin, Nat. Rev. Mater. 2021, 6, 294–312;
- 2gG. T. Williams, C. J. E. Haynes, M. Fares, C. Caltagirone, J. R. Hiscock, P. A. Gale, Chem. Soc. Rev. 2021, 50, 2737–2763;
- 2hP. Xin, P. Zhu, P. Su, J. L. Hou, Z. T. Li, J. Am. Chem. Soc. 2014, 136, 13078–13081;
- 2iJ. Shen, R. Ye, Z. Liu, H. Zeng, Angew. Chem. Int. Ed. 2022, 61, e202200259;
- 2jD. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Angew. Chem. Int. Ed. 2001, 40, 988–1011.
10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 3Q. Wang, Y. Zhong, D. P. Miller, X. Lu, Q. Tang, Z. L. Lu, E. Zurek, R. Liu, B. Gong, J. Am. Chem. Soc. 2020, 142, 2915–2924.
- 4
- 4aX. Zhou, G. Liu, K. Yamato, Y. Shen, R. Cheng, X. Wei, W. Bai, Y. Gao, H. Li, Y. Liu, F. Liu, D. M. Czajkowsky, J. Wang, M. J. Dabney, Z. Cai, J. Hu, F. V. Bright, L. He, X. C. Zeng, Z. Shao, B. Gong, Nat. Commun. 2012, 3, 949;
- 4bJ. Shen, R. Ye, A. Romanies, A. Roy, F. Chen, C. Ren, Z. Liu, H. Zeng, J. Am. Chem. Soc. 2020, 142, 10050–10058;
- 4cA. Vargas Jentzsch, A. Hennig, J. Mareda, S. Matile, Acc. Chem. Res. 2013, 46, 2791–2800;
- 4dX. Li, B. Shen, X. Q. Yao, D. Yang, J. Am. Chem. Soc. 2007, 129, 7264–7265.
- 5B. Hua, L. Shao, Z. Zhang, J. Liu, F. Huang, J. Am. Chem. Soc. 2019, 141, 15008–15012.
- 6
- 6aB. Gong, Z. Shao, Acc. Chem. Res. 2013, 46, 2856–2866;
- 6bS. Rondeau-Gagné, J. R. Néabo, M. Desroches, I. Levesque, M. Daigle, K. Cantin, J. F. Morin, Chem. Commun. 2013, 49, 9546–9548;
- 6cT. Shimizu, Bull. Chem. Soc. Jpn. 2018, 91, 623–668;
- 6dH. Itoh, S. Matsuoka, M. Kreir, M. Inoue, J. Am. Chem. Soc. 2012, 134, 14011–14018;
- 6eS. Hecht, A. Khan, Angew. Chem. Int. Ed. 2003, 42, 6021–6024.
- 7J. Shen, J. Fan, R. Ye, N. Li, Y. Mu, H. Zeng, Angew. Chem. Int. Ed. 2020, 59, 13328–13334.
- 8
- 8aA. Harada, J. Li, M. Kamachi, Nature 1993, 364, 516–518;
- 8bA. Ikeda, S. Shinkai, J. Chem. Soc. Chem. Commun. 1994, 2375–2376;
- 8cR. Scott Lokey, B. L. Iverson, Nature 1995, 375, 303–305;
- 8dM. Masuda, P. Jonkheijm, R. P. Sijbesma, E. W. Meijer, J. Am. Chem. Soc. 2003, 125, 15935–15940;
- 8eW. Zhang, D. Horoszewski, J. Decatur, C. Nuckolls, J. Am. Chem. Soc. 2003, 125, 4870–4873;
- 8fT. Yamaguchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M. Fujita, J. Am. Chem. Soc. 2004, 126, 10818–10819;
- 8gG. J. Gabriel, S. Sorey, B. L. Iverson, J. Am. Chem. Soc. 2005, 127, 2637–2640;
- 8hM. Shibahara, M. Watanabe, T. Iwanaga, K. Ideta, T. Shinmyozu, J. Org. Chem. 2007, 72, 2865–2877;
- 8iQ. Gan, C. Bao, B. Kauffmann, A. Grelard, J. Xiang, S. Liu, I. Huc, H. Jiang, Angew. Chem. Int. Ed. 2008, 47, 1715–1718;
- 8jY. Xu, M. D. Smith, M. F. Geer, P. J. Pellechia, J. C. Brown, A. C. Wibowo, L. S. Shimizu, J. Am. Chem. Soc. 2010, 132, 5334–5335;
- 8kZ. Chen, N. D. Urban, Y. Gao, W. Zhang, J. Deng, J. Zhu, X. C. Zeng, B. Gong, Org. Lett. 2011, 13, 4008–4011;
- 8lT. J. Hsu, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2012, 134, 142–145;
- 8mS. Rondeau-Gagne, J. R. Neabo, M. Desroches, J. Larouche, J. Brisson, J. F. Morin, J. Am. Chem. Soc. 2013, 135, 110–113;
- 8nN. Huang, X. Ding, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 8704–8707;
- 8oG. L. Zhang, L. P. Zhou, D. Q. Yuan, Q. F. Sun, Angew. Chem. Int. Ed. 2015, 54, 9844–9848;
- 8pE. Andre, B. Boutonnet, P. Charles, C. Martini, J. M. Aguiar-Hualde, S. Latil, V. Guerineau, K. Hammad, P. Ray, R. Guillot, V. Huc, Chem. Eur. J. 2016, 22, 3105–3114;
- 8qA. Fuertes, H. L. Ozores, M. Amorin, J. R. Granja, Nanoscale 2017, 9, 748–753;
- 8rR. Haver, H. L. Anderson, Helv. Chim. Acta 2018, 102, e1800211;
- 8sZ. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato, H. Isobe, Science 2019, 363, 151–155;
- 8tA. Roy, H. Joshi, R. Ye, J. Shen, F. Chen, A. Aksimentiev, H. Zeng, Angew. Chem. Int. Ed. 2020, 59, 4806–4813;
- 8uS. Mirzaei, E. Castro, R. Hernandez Sanchez, Chem. Eur. J. 2021, 27, 8642–8655;
- 8vL. L. Mao, H. Y. Xiao, J. Q. Zhao, Z. Diao, W. Zhou, H. W. Li, C. H. Tung, L. Z. Wu, H. Cong, CCS Chem. 2022, 4, 3772–3780.
- 9
- 9aQ. H. Guo, Y. Qiu, M. X. Wang, J. Fraser Stoddart, Nat. Chem. 2021, 13, 402–419;
- 9bF. Yang, M. Wang, D. Zhang, J. Yang, M. Zheng, Y. Li, Chem. Rev. 2020, 120, 2693–2758;
- 9cY. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem. Int. Ed. 2016, 55, 5136–5158.
- 10J. Nogami, Y. Nagashima, H. Sugiyama, K. Miyamoto, Y. Tanaka, H. Uekusa, A. Muranaka, M. Uchiyama, K. Tanaka, Angew. Chem. Int. Ed. 2022, 61, e202200800.
- 11Y. Zhong, Y. Yang, Y. Shen, W. Xu, Q. Wang, A. L. Connor, X. Zhou, L. He, X. C. Zeng, Z. Shao, Z. L. Lu, B. Gong, J. Am. Chem. Soc. 2017, 139, 15950–15957.
- 12J. S. Ferguson, K. Yamato, R. Liu, L. He, X. C. Zeng, B. Gong, Angew. Chem. Int. Ed. 2009, 48, 3150–3154.
- 13X. Wei, G. Zhang, Y. Shen, Y. Zhong, R. Liu, N. Yang, F. Y. Al-Mkhaizim, M. A. Kline, L. He, M. Li, Z. L. Lu, Z. Shao, B. Gong, J. Am. Chem. Soc. 2016, 138, 2749–2754.
- 14
- 14aD. Zhao, J. S. Moore, J. Org. Chem. 2002, 67, 3548–3554;
- 14bC. E. Johnson, F. A. Bovey, J. Chem. Phys. 1958, 29, 1012–1014;
- 14cA. S. Shetty, J. Zhang, J. S. Moore, J. Am. Chem. Soc. 1996, 118, 1019–1027.
- 15
- 15aJ. C. Nelson, J. G. Saven, J. S. Moore, P. G. Wolynes, Science 1997, 277, 1793–1796;
- 15bK. Matsuda, M. T. Stone, J. S. Moore, J. Am. Chem. Soc. 2002, 124, 11836–11837;
- 15cM. T. Stone, J. S. Moore, Org. Lett. 2004, 6, 469–472.
- 16R. B. Prince, J. G. Saven, P. G. Wolynes, J. S. Moore, J. Am. Chem. Soc. 1999, 121, 3114–3121.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.