Molecular Dipole Engineering of Carbonyl Additives for Efficient and Stable Perovskite Solar Cells
Corresponding Author
Xiaoqing Jiang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorBingqian Zhang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorGuangyue Yang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Zhongmin Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorXin Guo
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023 China
Search for more papers by this authorFengshan Zhang
Shan Dong Hua Tai Paper Industry Shareholding Co., Ltd., Dongying, 257335 China
Search for more papers by this authorShitao Yu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Shiwei Liu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Shuping Pang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Xiaoqing Jiang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorBingqian Zhang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorGuangyue Yang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Zhongmin Zhou
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorXin Guo
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023 China
Search for more papers by this authorFengshan Zhang
Shan Dong Hua Tai Paper Industry Shareholding Co., Ltd., Dongying, 257335 China
Search for more papers by this authorShitao Yu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Shiwei Liu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Shuping Pang
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorAbstract
Carbonyl functional materials as additives are extensively applied to reduce the defects density of the perovskite film. However, there is still a lack of comprehensive understanding for the effect of carbonyl additives to improve device performance. In this work, we systematically study the effect of carbonyl additive molecules on the passivation of defects in perovskite films. After a comprehensive investigation, the results confirm the importance of molecular dipole in amplifying the passivation effect of additive molecules. The additive with strong molecular dipole possesses the advantages of enhancing the efficiency and stability of perovskite solar cells (PSCs). After optimization, the companion efficiency of PSCs is 23.20 %, and it can maintain long-term stability under harsh conditions. Additionally, a large-area solar cell module-modified DLBA was 20.18 % (14 cm2). This work provides an important reference for the selection and designing of efficient carbonyl additives.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202302462-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 12022, https://www.nrel.gov/pv/cell-efficiency.html.
- 2M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, S.-I. Mo, Y.-K. Kim, H. Lee, N. G. An, S. Cho, W. R. Tress, S. M. Zakeeruddin, A. Hagfeldt, J. Y. Kim, M. Grätzel, D. S. Kim, Science 2022, 375, 302.
- 3H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542–546.
- 4M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643–647.
- 5Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 6L. Fu, H. Li, L. Wang, R. Yin, B. Li, L. Yin, Energy Environ. Sci. 2020, 13, 4017.
- 7T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Z. Ku, Y. Peng, F. Huang, Q. Meng, Y. Cheng, J. Zhong, Adv. Energy Mater. 2017, 7, 1700576.
- 8J. Zhao, Y. Gao, F. D. Angelis, J. Huang, S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, Science 2019, 365, 473–478.
- 9Y. Zhao, T. Heumueller, J. Zhang, J. Luo, O. Kasian, S. Langner, C. Kupfer, B. Liu, Y. Zhong, J. Elia, A. Osvet, J. Wu, C. Liu, Z. Wan, C. Jia, N. Li, J. Hauch, C. J. Brabec, Nat. Energy 2022, 7, 144–152.
- 10Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, H. J. Snaith, Nat. Energy 2017, 2, 17135.
- 11S. Akin, N. Arora, S. M. Zakeeruddin, M. Grätzel, R. H. Friend, M. I. Dar, Adv. Energy Mater. 2020, 10, 1903090.
- 12Y. T. Chen, X. M. Liu, Y. X. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202110603.
- 13B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48, 3842–3867.
- 14E. Aydin, M. D. Bastiani, S. D. Wolf, Adv. Mater. 2019, 31, 1900428.
- 15Y. Cao, F. Gao, L. Xiang, H. Li, D. Li, Q. Liu, H. Liu, C. Zou, S. Li, Adv. Mater. Interfaces 2022, 9, 2200179.
- 16Q. A. Akkerman, M. Gandini, F. D. Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, L. Manna, Nat. Energy 2017, 2, 16194.
- 17X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
- 18C. Ge, X. Liu, Z. Yang, H. Li, W. Niu, X. Liu, Q. Dong, Angew. Chem. Int. Ed. 2022, 61, e202116602.
- 19Y.-J. Kang, S.-I. Na, Nano Energy 2022, 97, 107193.
- 20S. Zhan, Y. Duan, Z. Liu, L. Yang, K. He, Y. Che, W. Zhao, Y. Han, S. Yang, G. Zhao, N. Yuan, J. Ding, S. Liu, Adv. Energy Mater. 2022, 12, 2200867.
- 21Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 2021, 31, 2005776.
- 22L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei, B. Zhang, C. Chen, S. Zheng, H. Song, J. Chen, Adv. Energy Mater. 2021, 11, 2100529.
- 23R. Wang, J. Xue, K. Wang, Z. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509–1513.
- 24Q. Zhou, Y. Gao, C. Cai, Z. Zhang, J. Xu, Z. Yuan, P. Gao, Angew. Chem. Int. Ed. 2021, 60, 8303–8312.
- 25J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature 2021, 592, 381–385.
- 26S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2020, 142, 11937–11938.
- 27T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang, L. Han, Adv. Energy Mater. 2019, 9, 1803766.
- 28J. Zhang, J. Duan, Q. Zhang, Q. Guo, F. Yan, X. Yang, Y. Duan, Q. Tang, Chem. Eng. J. 2022, 431, 134230.
- 29J. Duan, M. Wang, Y. Wang, J. Zhang, Q. Guo, Q. Zhang, Y. Duan, Q. Tang, ACS Energy Lett. 2021, 6, 2336–2342.
- 30F. Fairbrother, Nature 1934, 134, 458–459.
10.1038/134458b0 Google Scholar
- 31Z. Jiang, J. Fu, J. Zhang, Q. Chen, Z. Zhang, W. Ji, A. Wang, T. Zhang, Y. Zhou, B. Song, Chem. Eng. J. 2022, 436, 135269.
- 32S. Sonmezoglu, S. Akin, Nano Energy 2020, 76, 105127.
- 33G. Wang, W. Wang, L. Bai, Q. Zhou, D. He, B. Liu, P. Zhao, L. Tan, Y. Li, D. Wei, J. Chen, Adv. Mater. Interfaces 2022, 9, 2200904.
- 34H. Choi, X. Liu, H. I. Kim, D. Kim, T. Park, S. Song, Adv. Energy Mater. 2021, 11, 2003829.
- 35D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, M. K. Nazeeruddin, Adv. Mater. 2016, 28, 2910–2915.
- 36T. Li, S. Wang, J. Yang, X. Pu, B. Gao, Z. He, Q. Cao, J. Han, X. Li, Nano Energy 2021, 82, 105742.
- 37X. Li, C. Li, X. Zhao, Y. Zhang, G. Liu, Z. Zhang, D. Wang, L. Xiao, Z. Chen, B. Qu, ACS Appl. Mater. Interfaces 2021, 13, 4553–4559.
- 38S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, J. Am. Chem. Soc. 2017, 139, 7504–7512.
- 39W. Chen, H. Zhang, H. Zheng, H. Li, F. Guo, G. Ni, M. Ma, C. Shi, R. Ghadari, L. Hu, Chem. Commun. 2020, 56, 1879–1882.
- 40J. Chen, X. Zhao, S. G. Kim, N. G. Park, Adv. Mater. 2019, 31, 1902902.
- 41Q. Zhou, L. Liang, J. Hu, B. Cao, L. Yang, T. Wu, X. Li, B. Zhang, P. Gao, Adv. Energy Mater. 2019, 9, 1802595.
- 42A. Dualeh, T. Moehl, N. Tetreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. Grätzel, ACS Nano 2014, 8, 4053.
- 43Y. Kang, S. Kwon, S. Cho, Y. Seo, M. Choi, S. Kim, S. Na, ACS Energy Lett. 2020, 5, 2535–2545.
- 44W. Wu, H. Xu, G. Liu, H. Zheng, X. Pan, Appl. Surf. Sci. 2021, 570, 151259.
- 45J. Song, Q. Hu, Q. Zhang, S. Xiong, Z. Zhao, J. Ali, Y. Zou, W. Feng, Z. Yang, Q. Bao, Y. Zhang, T. P. Russell, F. Liu, Adv. Funct. Mater. 2021, 31, 2009103.
- 46H. Zheng, W. Wu, G. Liu, X. Pan, Adv. Funct. Mater. 2020, 30, 2000034.
- 47X. Liu, J. Wu, C. Wang, Y. Yang, D. Wang, G. Li, Y. Du, Y. Xu, L. Zhang, T. Zhang, L. Zhang, Small 2021, 17, 2103336.
- 48Y. Chen, N. Li, L. Wang, L. Li, Z. Xu, H. Jiao, P. Liu, C. Zhu, H. Zai, M. Sun, W. Zou, S. Zhang, G. Xing, X. Liu, J. Wang, D. Li, B. Huang, Q. Chen, H. Zhou, Nat. Commun. 2019, 10, 1112.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.