Site-Selective C−H Alkenylation of N-Heteroarenes by Ligand-Directed Co/Al and Co/Mg Cooperative Catalysis**
Yuri Saito
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai, 980-8578 Japan
Search for more papers by this authorDr. Jun Kikuchi
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai, 980-8578 Japan
Search for more papers by this authorCorresponding Author
Prof. Chen Wang
Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing, 312000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Naohiko Yoshikai
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai, 980-8578 Japan
Search for more papers by this authorYuri Saito
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai, 980-8578 Japan
Search for more papers by this authorDr. Jun Kikuchi
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai, 980-8578 Japan
Search for more papers by this authorCorresponding Author
Prof. Chen Wang
Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing, 312000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Naohiko Yoshikai
Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai, 980-8578 Japan
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2023-qf1k5).
Abstract
We report herein the design and development of Co/Al and Co/Mg bimetallic catalysts, supported by a phosphine/secondary phosphine oxide (PSPO) bifunctional ligand, for the site-selective C−H alkenylation of nitrogen-containing heteroarenes with alkynes. These catalysts enable the alkenylation of pyridine, pyridone, and imidazo[1,2-a]pyridine derivatives at the C−H site proximal to the Lewis basic nitrogen or oxygen atom, which represents a selectivity profile distinct from that of the previously developed cobalt-diphosphine/aluminum catalyst. The alkenylated products were obtained in moderate to good yields using various heterocycles and differently substituted internal alkynes. Kinetic isotope effect experiments suggest the irreversibility of the C−H activation step, the relevance of which to the rate-limiting step depends on the reaction conditions. Density functional theory calculations indicate that ligand-to-ligand hydrogen transfer is the common mechanism of C−H activation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202301006-sup-0001-misc_information.pdf21.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aS. Sasmal, U. Dutta, G. K. Lahiri, D. Maiti, Chem. Lett. 2020, 49, 1406–1420;
- 1bJ. Becica, G. E. Dobereiner, Org. Biomol. Chem. 2019, 17, 2055–2069;
- 1cW. Guan, G. Zeng, H. Kameo, Y. Nakao, S. Sakaki, Chem. Rec. 2016, 16, 2405–2425;
- 1dC. Wang, Z. Xi, Chem. Soc. Rev. 2007, 36, 1395–1406.
- 2
- 2aN. Yoshikai, H. Mashima, E. Nakamura, J. Am. Chem. Soc. 2005, 127, 17978–17979;
- 2bN. Yoshikai, H. Matsuda, E. Nakamura, J. Am. Chem. Soc. 2009, 131, 9590–9599;
- 2cY. Nakamura, N. Yoshikai, L. Ilies, E. Nakamura, Org. Lett. 2012, 14, 3316–3319.
- 3L. Ackermann, Isr. J. Chem. 2010, 50, 652–663.
- 4
- 4aL. Ackermann, R. Born, J. H. Spatz, D. Meyer, Angew. Chem. Int. Ed. 2005, 44, 7216–7219; Angew. Chem. 2005, 117, 7382–7386;
- 4bL. Ackermann, A. R. Kapdi, S. Fenner, C. Kornhaass, C. Schulzke, Chem. Eur. J. 2011, 17, 2965–2971;
- 4cZ. Jin, Y. J. Li, Y. Q. Ma, L. L. Qiu, J. X. Fang, Chem. Eur. J. 2012, 18, 446–450.
- 5For a seminal work on the use of SPO in Pd-catalyzed C−H activation, see also: L. Ackermann, S. Barfüßer, Synlett 2009, 808–812.
- 6Y.-X. Luan, M. Ye, Chem. Commun. 2022, 58, 12260–12273.
- 7
- 7aP. A. Donets, N. Cramer, J. Am. Chem. Soc. 2013, 135, 11772–11775;
- 7bY.-X. Wang, S.-L. Qi, Y.-X. Luan, X.-W. Han, S. Wang, H. Chen, M. Ye, J. Am. Chem. Soc. 2018, 140, 5360–5364;
- 7cH. Chen, Y.-X. Wang, Y.-X. Luan, M. Ye, Angew. Chem. Int. Ed. 2020, 59, 9428–9432; Angew. Chem. 2020, 132, 9514–9518;
- 7dY.-X. Wang, F.-P. Zhang, Y.-X. Luan, M. Ye, Org. Lett. 2020, 22, 2230–2234;
- 7eR.-H. Wang, J.-F. Li, Y. Li, S.-L. Qi, T. Zhang, Y.-X. Luan, M. Ye, ACS Catal. 2021, 11, 858–864;
- 7fG. Yin, Y. Li, R.-H. Wang, J.-F. Li, X.-T. Xu, Y.-X. Luan, M. Ye, ACS Catal. 2021, 11, 4606–4612;
- 7gS.-L. Qi, Y.-P. Liu, Y. Li, Y.-X. Luan, M. Ye, Nat. Commun. 2022, 13, 2938;
- 7hJ.-F. Li, D. Pan, H.-R. Wang, T. Zhang, Y. Li, G. Huang, M. Ye, J. Am. Chem. Soc. 2022, 144, 18810–18816.
- 8For representative examples, see:
- 8aY. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448–2449;
- 8bY. Nakao, H. Idei, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2009, 131, 15996–15997;
- 8cY. Nakao, H. Idei, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2009, 131, 5070–5071;
- 8dY. Nakao, Y. Yamada, N. Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010, 132, 13666–13668.
- 9For Ni-catalyzed enantioselective C−H functionalization using phosphine/SPO bifunctional ligand (JoSPOphos) without Lewis acid and its mechanism involving a unique role of the P−H bond, see:
- 9aJ. Loup, V. Muller, D. Ghorai, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 1749–1753; Angew. Chem. 2019, 131, 1763–1767;
- 9bJ.-B. Liu, X. Wang, A. M. Messinis, X.-J. Liu, R. Kuniyil, D.-Z. Chen, L. Ackermann, Chem. Sci. 2021, 12, 718–729.
- 10For Ni-catalyzed enantioselective C−H functionalization without bifunctional ligand and/or Lewis acid, see:
- 10aJ. Diesel, A. M. Finogenova, N. Cramer, J. Am. Chem. Soc. 2018, 140, 4489–4493;
- 10bJ. Diesel, D. Grosheva, S. Kodama, N. Cramer, Angew. Chem. Int. Ed. 2019, 58, 11044–11048; Angew. Chem. 2019, 131, 11160–11164;
- 10cW.-B. Zhang, X.-T. Yang, J.-B. Ma, Z.-M. Su, S.-L. Shi, J. Am. Chem. Soc. 2019, 141, 5628–5634;
- 10dY. Cai, X. Ye, S. Liu, S.-L. Shi, Angew. Chem. Int. Ed. 2019, 58, 13433–13437; Angew. Chem. 2019, 131, 13567–13571;
- 10eJ.-B. Ma, X. Zhao, D. Zhang, S.-L. Shi, J. Am. Chem. Soc. 2022, 144, 13643–13651;
- 10fM. Chen, J. Montgomery, ACS Catal. 2022, 12, 11015–11023.
- 11For a N-heterocyclic carbene/hydroxy bifunctional ligand-enabled site-selective C−H activation by Ni/Al catalysis, see: T. Zhang, Y.-X. Luan, N. Y. S. Lam, J.-F. Li, Y. Li, M. Ye, J.-Q. Yu, Nat. Chem. 2021, 13, 1207–1213.
- 12
- 12aK. Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208–1219;
- 12bM. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498–525;
- 12cP. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192–2452;
- 12dN. Yoshikai in Comprehensive Organometallic Chemistry IV, Vol. 7 (Eds.: G. Perkin, K. Meyer, D. O'Hare), Elsevier, Kidlington, 2022, pp. 759–815.
- 13C.-S. Wang, S. Di Monaco, A. N. Thai, M. S. Rahman, B. P. Pang, C. Wang, N. Yoshikai, J. Am. Chem. Soc. 2020, 142, 12878–12889.
- 14J. Wu, W.-X. Gao, X.-B. Huang, Y.-B. Zhou, M.-C. Liu, H.-Y. Wu, Org. Chem. Front. 2021, 8, 6048–6052.
- 15C.-C. Tsai, W.-C. Shih, C.-H. Fang, C.-Y. Li, T.-G. Ong, G. P. Yap, J. Am. Chem. Soc. 2010, 132, 11887–11889.
- 16For examples of phosphine/SPO bidentate ligands in catalysis, see:
- 16aC. Chen, Z. Zhang, S. Jin, X. Fan, M. Geng, Y. Zhou, S. Wen, X. Wang, L. W. Chung, X.-Q. Dong, X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 6808–6812; Angew. Chem. 2017, 129, 6912–6916;
- 16bV. Müller, D. Ghorai, L. Capdevila, A. M. Messinis, X. Ribas, L. Ackermann, Org. Lett. 2020, 22, 7034–7040.
- 17
- 17aJ. Guihaumé, S. Halbert, O. Eisenstein, R. N. Perutz, Organometallics 2012, 31, 1300–1314;
- 17bA. J. Nett, J. Montgomery, P. M. Zimmerman, ACS Catal. 2017, 7, 7352–7362.
- 18
- 18aB. J. Fallon, E. Derat, M. Amatore, C. Aubert, F. Chemla, F. Ferreira, A. Perez-Luna, M. Petit, J. Am. Chem. Soc. 2015, 137, 2448–2451;
- 18bB. A. Suslick, T. D. Tilley, J. Am. Chem. Soc. 2020, 142, 11203–11218;
- 18cJ. C. A. Oliveira, U. Dhawa, L. Ackermann, ACS Catal. 2021, 11, 1505–1515.
- 19K. Gao, P.-S. Lee, T. Fujita, N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249–12251.
- 20N. Chatani, T. Fukuyama, H. Tatamidani, F. Kakiuchi, S. Murai, J. Org. Chem. 2000, 65, 4039–4047.
- 21E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066–3072; Angew. Chem. 2012, 124, 3120–3126.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.