Giving Gold Wings: Ultrabright and Fragmentation Free Mass Spectrometry Reporters for Barcoding, Bioconjugation Monitoring, and Data Storage
Nathaniel L. Dominique
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorIsabel M. Jensen
Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorGurkiran Kaur
Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorChandler Q. Kotseos
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorDr. William C. Boggess
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorCorresponding Author
Prof. David M. Jenkins
Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996 USA
Contribution: Conceptualization (supporting), Funding acquisition (equal), Project administration (equal), Supervision (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Jon P. Camden
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Conceptualization (lead), Funding acquisition (equal), Project administration (equal), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorNathaniel L. Dominique
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead)
Search for more papers by this authorIsabel M. Jensen
Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorGurkiran Kaur
Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorChandler Q. Kotseos
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorDr. William C. Boggess
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Investigation (supporting), Methodology (supporting)
Search for more papers by this authorCorresponding Author
Prof. David M. Jenkins
Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, 37996 USA
Contribution: Conceptualization (supporting), Funding acquisition (equal), Project administration (equal), Supervision (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Jon P. Camden
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556 USA
Contribution: Conceptualization (lead), Funding acquisition (equal), Project administration (equal), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202219182-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Y. Du, D. Chen, Y. Y. Chen, Y. D. Huang, L. L. Ma, Q. R. Xie, Y. Z. Xu, X. H. Zhu, Z. L. Chen, Z. B. Yin, H. H. Xu, X. Z. Wu, ACS Appl. Nano Mater. 2022, 5, 9633–9645;
- 1bJ. Yukird, C. J. Kaminsky, O. Chailapakul, N. Rodthongkum, R. W. Vachet, J. Am. Soc. Mass Spectrom. 2021, 32, 1780–1788;
- 1cA. L. Marsico, B. Creran, B. Duncan, S. G. Elci, Y. Jiang, T. B. Onasch, J. Wormhoudt, V. M. Rotello, R. W. Vachet, J. Am. Soc. Mass Spectrom. 2015, 26, 1931–1937;
- 1dS. A. Iakab, P. Rafols, M. Tajes, X. Correig-Blanchar, M. Garcia-Altares, ACS Nano 2020, 14, 6785–6794.
- 2
- 2aN. T. Phan, A. S. Mohammadi, M. Dowlatshahi Pour, A. G. Ewing, Anal. Chem. 2016, 88, 1734–1741;
- 2bR. C. Huang, W. J. Chiu, I. Po-Jung Lai, C. C. Huang, Sci. Rep. 2015, 5, 10292;
- 2cS. G. Elci, G. Yesilbag Tonga, B. Yan, S. T. Kim, C. S. Kim, Y. Jiang, K. Saha, D. F. Moyano, A. L. M. Marsico, V. M. Rotello, R. W. Vachet, ACS Nano 2017, 11, 7424–7430;
- 2dM. Dufresne, A. Thomas, J. Breault-Turcot, J. F. Masson, P. Chaurand, Anal. Chem. 2013, 85, 3318–3324;
- 2eS. G. Elci, Y. Jiang, B. Yan, S. T. Kim, K. Saha, D. F. Moyano, G. Yesilbag Tonga, L. C. Jackson, V. M. Rotello, R. W. Vachet, ACS Nano 2016, 10, 5536–5542;
- 2fI. García, M. Henriksen-Lacey, A. Sanchez-Iglesias, M. Grzelczak, S. Penades, L. M. Liz-Marzan, J. Phys. Chem. Lett. 2015, 6, 2003–2008;
- 2gZ. J. Zhu, P. S. Ghosh, O. R. Miranda, R. W. Vachet, V. M. Rotello, J. Am. Chem. Soc. 2008, 130, 14139–14143;
- 2hS. Hou, K. N. Sikora, R. Tang, Y. Liu, Y. W. Lee, S. T. Kim, Z. Jiang, R. W. Vachet, V. M. Rotello, ACS Nano 2016, 10, 6731–6736;
- 2iZ. J. Zhu, T. Posati, D. F. Moyano, R. Tang, B. Yan, R. W. Vachet, V. M. Rotello, Small 2012, 8, 2659–2663.
- 3B. Creran, B. Yan, D. F. Moyano, M. M. Gilbert, R. W. Vachet, V. M. Rotello, Chem. Commun. 2012, 48, 4543–4545.
- 4B. Yan, S. T. Kim, C. S. Kim, K. Saha, D. F. Moyano, Y. Xing, Y. Jiang, A. L. Roberts, F. S. Alfonso, V. M. Rotello, R. W. Vachet, J. Am. Chem. Soc. 2013, 135, 12564–12567.
- 5
- 5aY. F. Huang, H. T. Chang, Anal. Chem. 2007, 79, 4852–4859;
- 5bY. F. Huang, H. T. Chang, Anal. Chem. 2006, 78, 1485–1493.
- 6
- 6aA. Palermo, E. M. Forsberg, B. Warth, A. E. Aisporna, E. Billings, E. Kuang, H. P. Benton, D. Berry, G. Siuzdak, ACS Nano 2018, 12, 6938–6948;
- 6bM. E. Kurczy, Z. J. Zhu, J. Ivanisevic, A. M. Schuyler, K. Lalwani, A. F. Santidrian, J. M. David, A. Giddabasappa, A. J. Roberts, H. J. Olivos, P. J. O′Brien, L. Franco, M. W. Fields, L. P. Paris, M. Friedlander, C. H. Johnson, A. A. Epstein, H. E. Gendelman, M. R. Wood, B. H. Felding, G. J. Patti, M. E. Spilker, G. Siuzdak, Nat. Commun. 2015, 6, 5998.
- 7K. M. Harkness, L. S. Fenn, D. E. Cliffel, J. A. McLean, Anal. Chem. 2010, 82, 3061–3066.
- 8B. Yan, Z. J. Zhu, O. R. Miranda, A. Chompoosor, V. M. Rotello, R. W. Vachet, Anal. Bioanal. Chem. 2010, 396, 1025–1035.
- 9C. C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I. B. Kim, B. Erdogan, S. A. Krovi, U. H. Bunz, V. M. Rotello, Nat. Nanotechnol. 2007, 2, 318–323.
- 10
- 10aW. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290–1309;
10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 1342–1363;
- 10bG. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746–1787;
- 10cM. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496.
- 11
- 11aA. V. Zhukhovitskiy, M. J. MacLeod, J. A. Johnson, Chem. Rev. 2015, 115, 11503–11532;
- 11bS. Engel, E. C. Fritz, B. J. Ravoo, Chem. Soc. Rev. 2017, 46, 2057–2075;
- 11cC. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi, C. H. Li, C. M. Crudden, Chem. Rev. 2019, 119, 4986–5056;
- 11dP. Bellotti, M. Koy, M. N. Hopkinson, F. Glorius, Nat. Chem. Rev. 2021, 5, 711–725;
- 11eS. R. Thomas, A. Casini, J. Organomet. Chem. 2021, 938, 121743.
- 12
- 12aL. M. Sherman, M. D. Finley, R. K. Borsari, N. Schuster-Little, S. L. Strausser, R. J. Whelan, D. M. Jenkins, J. P. Camden, ACS Omega 2022, 7, 1444–1451;
- 12bN. A. Nosratabad, Z. C. Jin, L. Du, M. Thakur, H. Mattoussi, Chem. Mater. 2021, 33, 921–933;
- 12cD. T. H. Nguyen, M. Belanger-Bouliga, L. R. Shultz, A. Maity, T. Jurca, A. Nazemi, Chem. Mater. 2021, 33, 9588–9600;
- 12dM. J. MacLeod, A. J. Goodman, H. Z. Ye, H. V. Nguyen, T. Van Voorhis, J. A. Johnson, Nat. Chem. 2019, 11, 57–63;
- 12eM. J. MacLeod, J. A. Johnson, J. Am. Chem. Soc. 2015, 137, 7974–7977;
- 12fI. Singh, D. S. Lee, S. Huang, H. Bhattacharjee, W. Xu, J. F. McLeod, C. M. Crudden, Z. She, Chem. Commun. 2021, 57, 8421–8424;
- 12gC. M. Crudden, J. H. Horton, M. R. Narouz, Z. Li, C. A. Smith, K. Munro, C. J. Baddeley, C. R. Larrea, B. Drevniok, B. Thanabalasingam, A. B. McLean, O. V. Zenkina, Ebralidze II, Z. She, H. B. Kraatz, N. J. Mosey, L. N. Saunders, A. Yagi, Nat. Commun. 2016, 7, 12654;
- 12hZ. Li, K. Munro, M. R. Narouz, A. Lau, H. Hao, C. M. Crudden, J. H. Horton, ACS Appl. Mater. Interfaces 2018, 10, 17560–17570.
- 13
- 13aC. Vericat, M. E. Vela, G. Benitez, P. Carro, R. C. Salvarezza, Chem. Soc. Rev. 2010, 39, 1805–1834;
- 13bC. M. Crudden, J. H. Horton, Ebralidze II, O. V. Zenkina, A. B. McLean, B. Drevniok, Z. She, H. B. Kraatz, N. J. Mosey, T. Seki, E. C. Keske, J. D. Leake, A. Rousina-Webb, G. Wu, Nat. Chem. 2014, 6, 409–414;
- 13cJ. F. DeJesus, M. J. Trujillo, J. P. Camden, D. M. Jenkins, J. Am. Chem. Soc. 2018, 140, 1247–1250;
- 13dR. W. Y. Man, C. H. Li, M. W. A. MacLean, O. V. Zenkina, M. T. Zamora, L. N. Saunders, A. Rousina-Webb, M. Nambo, C. M. Crudden, J. Am. Chem. Soc. 2018, 140, 1576–1579;
- 13eA. Rühling, K. Schaepe, L. Rakers, B. Vonhoren, P. Tegeder, B. J. Ravoo, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 5856–5860; Angew. Chem. 2016, 128, 5950–5955;
- 13fL. M. Sherman, S. L. Strausser, R. K. Borsari, D. M. Jenkins, J. P. Camden, Langmuir 2021, 37, 5864–5871.
- 14
- 14aG. Wang, A. Ruhling, S. Amirjalayer, M. Knor, J. B. Ernst, C. Richter, H. J. Gao, A. Timmer, H. Y. Gao, N. L. Doltsinis, F. Glorius, H. Fuchs, Nat. Chem. 2017, 9, 152–156;
- 14bA. Inayeh, R. R. K. Groome, I. Singh, A. J. Veinot, F. C. de Lima, R. H. Miwa, C. M. Crudden, A. B. McLean, Nat. Commun. 2021, 12, 4034;
- 14cE. Angove, F. Grillo, H. A. Fruchtl, A. J. Veinot, I. Singh, J. H. Horton, C. M. Crudden, C. J. Baddeley, J. Phys. Chem. Lett. 2022, 13, 2051–2056;
- 14dA. Bakker, A. Timmer, E. Kolodzeiski, M. Freitag, H. Y. Gao, H. Monig, S. Amirjalayer, F. Glorius, H. Fuchs, J. Am. Chem. Soc. 2018, 140, 11889–11892;
- 14eM. J. Trujillo, S. L. Strausser, J. C. Becca, J. F. DeJesus, L. Jensen, D. M. Jenkins, J. P. Camden, J. Phys. Chem. Lett. 2018, 9, 6779–6785.
- 15
- 15aJ. Yang, M. Palla, F. G. Bosco, T. Rindzevicius, T. S. Alstrom, M. S. Schmidt, A. Boisen, J. Ju, Q. Lin, ACS Nano 2013, 7, 5350–5359;
- 15bC. Ma, K. Fu, M. J. Trujillo, X. Gu, N. Baig, P. W. Bohn, J. P. Camden, J. Phys. Chem. C 2018, 122, 11031–11037;
- 15cB. L. Scott, K. T. Carron, J. Phys. Chem. C 2016, 120, 20905–20913;
- 15dF. Rissner, D. A. Egger, L. Romaner, G. Heimel, E. Zojer, ACS Nano 2010, 4, 6735–6746;
- 15eK. Susumu, B. C. Mei, H. Mattoussi, Nat. Protoc. 2009, 4, 424–436.
- 16
- 16aJ. F. DeJesus, L. M. Sherman, D. J. Yohannan, J. C. Becca, S. L. Strausser, L. F. P. Karger, L. Jensen, D. M. Jenkins, J. P. Camden, Angew. Chem. Int. Ed. 2020, 59, 7585–7590; Angew. Chem. 2020, 132, 7655–7660;
- 16bN. L. Dominique, R. Chen, A. V. B. Santos, S. L. Strausser, T. Rauch, C. Q. Kotseos, W. C. Boggess, L. Jensen, D. M. Jenkins, J. P. Camden, Inorg. Chem. Front. 2022, 9, 6279–6287.
- 17P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391–3395.
- 18
- 18aR. Rubbiani, I. Kitanovic, H. Alborzinia, S. Can, A. Kitanovic, L. A. Onambele, M. Stefanopoulou, Y. Geldmacher, W. S. Sheldrick, G. Wolber, A. Prokop, S. Wolfl, I. Ott, J. Med. Chem. 2010, 53, 8608–8618;
- 18bM. V. Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton, A. H. White, Dalton Trans. 2006, 3708–3715.
- 19
- 19aM. Rodríguez-Castillo, D. Laurencin, F. Tielens, A. van der Lee, S. Clement, Y. Guari, S. Richeter, Dalton Trans. 2014, 43, 5978–5982;
- 19bM. Gil-Moles, U. Basu, R. Bussing, H. Hoffmeister, S. Turck, A. Varchmin, I. Ott, Chem. Eur. J. 2020, 26, 15140–15144;
- 19cF. Cisnetti, A. Gautier, Angew. Chem. Int. Ed. 2013, 52, 11976–11978; Angew. Chem. 2013, 125, 12194–12196;
- 19dM. Gil-Moles, S. Turck, U. Basu, A. Pettenuzzo, S. Bhattacharya, A. Rajan, X. Ma, R. Bussing, J. Wolker, H. Burmeister, H. Hoffmeister, P. Schneeberg, A. Prause, P. Lippmann, J. Kusi-Nimarko, S. Hassell-Hart, A. McGown, D. Guest, Y. Lin, A. Notaro, R. Vinck, J. Karges, K. Cariou, K. Peng, X. Qin, X. Wang, J. Skiba, L. Szczupak, K. Kowalski, U. Schatzschneider, C. Hemmert, H. Gornitzka, E. R. Milaeva, A. A. Nazarov, G. Gasser, J. Spencer, L. Ronconi, U. Kortz, J. Cinatl, D. Bojkova, I. Ott, Chem. Eur. J. 2021, 27, 17928–17940;
- 19eJ. L. Hickey, R. A. Ruhayel, P. J. Barnard, M. V. Baker, S. J. Berners-Price, A. Filipovska, J. Am. Chem. Soc. 2008, 130, 12570–12571.
- 20N. L. Dominique, S. L. Strausser, J. E. Olson, W. C. Boggess, D. M. Jenkins, J. P. Camden, Anal. Chem. 2021, 93, 13534–13538.
- 21J. Pavlov, A. B. Attygalle, J. Am. Soc. Mass Spectrom. 2019, 30, 806–813.
- 22
- 22aC. T. Clelland, V. Risca, C. Bancroft, Nature 1999, 399, 533–534;
- 22bJ. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stoddart, J. R. Heath, Nature 2007, 445, 414–417;
- 22cV. Zhirnov, R. M. Zadegan, G. S. Sandhu, G. M. Church, W. L. Hughes, Nat. Mater. 2016, 15, 366–370;
- 22dS. Martens, A. Landuyt, P. Espeel, B. Devreese, P. Dawyndt, F. Du Prez, Nat. Commun. 2018, 9, 4451;
- 22eB. J. Cafferty, A. S. Ten, M. J. Fink, S. Morey, D. J. Preston, M. Mrksich, G. M. Whitesides, ACS Cent. Sci. 2019, 5, 911–916.
- 23J. Brown-Cohen, K. Souza, A. Stepanchuk,“Colossus Project: Baudot Code”, can be found under https://cs.stanford.edu/people/eroberts/courses/soco/projects/2008–09/colossus/, 2008 (accessed 20 February 2023).
- 24M. Mrksich, ACS Nano 2008, 2, 7–18.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.