Scalable Green Synthesis of Robust Ultra-Microporous Hofmann Clathrate Material with Record C3H6 Storage Density for Efficient C3H6/C3H8 Separation
Di Liu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorJiyan Pei
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xu Zhang
School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300 China
These authors contributed equally to this work.
Search for more papers by this authorXiao-Wen Gu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Hui-Min Wen
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorProf. Guodong Qian
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDi Liu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorJiyan Pei
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xu Zhang
School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300 China
These authors contributed equally to this work.
Search for more papers by this authorXiao-Wen Gu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Hui-Min Wen
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007 China
Search for more papers by this authorProf. Guodong Qian
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorAbstract
Developing porous materials for C3H6/C3H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3H6 with a record high storage density of 0.818 g mL−1, and concurrently shows high C3H6/C3H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3H6 but also enable the dense packing of C3H6. Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3H6 uptake (2.79 mmol g−1). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3H6/C3H8 separation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
[email protected]101.5 KB | Supporting Information |
[email protected]123 KB | Supporting Information |
ange202218590-sup-0001-checkcif-ZJU-75.pdf120.7 KB | Supporting Information |
ange202218590-sup-0001-misc_information.pdf4.9 MB | Supporting Information |
ange202218590-sup-0001-ZJU-75.cif106 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. S. Sholl, R. P. Lively, Nature 2016, 532, 435–437.
- 2R. B. Eldridge, Ind. Eng. Chem. Res. 1993, 32, 2208–2212.
- 3C. C. E. Christopher, A. Dutta, S. Farooq, I. A. Karimi, Ind. Eng. Chem. Res. 2017, 56, 14557–14564.
- 4V. F. D. Martins, A. M. Ribeiro, M. G. Plaza, J. C. Santos, J. M. Loureiro, A. F. P. Ferreira, A. E. Rodrigues, J. Chromatogr. A 2015, 1423, 136–148.
- 5S. U. Rege, R. T. Yang, Chem. Eng. Sci. 2002, 57, 1139–1149.
- 6A. Marinas, P. Bruijnincx, J. Ftouni, F. J. Urbano, C. Pinel, Catal. Today 2015, 239, 31–37.
- 7M. Khalighi, Y. F. Chen, S. Farooq, I. A. Karimi, J. W. Jiang, Ind. Eng. Chem. Res. 2013, 52, 3877–3892.
- 8
- 8aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 8bS. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5700–5734;
- 8cZ. Chen, K. O. Kirlikovali, P. Li, O. K. Farha, Acc. Chem. Res. 2022, 55, 579–591.
- 9
- 9aJ.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932;
- 9bK. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev. 2017, 46, 3402–3430.
- 10
- 10aW. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737;
- 10bZ. Zhang, S. B. Peh, Y. Wang, C. Kang, W. Fan, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 18927–18932; Angew. Chem. 2020, 132, 19089–19094;
- 10cB. Joarder, J.-B. Lin, Z. Romero, G. K. H. Shimizu, J. Am. Chem. Soc. 2017, 139, 7176–7179;
- 10dY.-Y. Xue, X.-Y. Bai, J. Zhang, Y. Wang, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Q.-G. Zhai, Angew. Chem. Int. Ed. 2021, 60, 10122–10128; Angew. Chem. 2021, 133, 10210–10216;
- 10eH. Li, C. Liu, C. Chen, Z. Di, D. Yuan, J. Pang, W. Wei, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 7547–7552; Angew. Chem. 2021, 133, 7625–7630;
- 10fO. T. Qazvini, R. Babarao, S. G. Telfer, Nat. Commun. 2021, 12, 197.
- 11
- 11aL. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, Nat. Commun. 2017, 8, 1233;
- 11bY. Zhang, L. Yang, L. Wang, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2019, 58, 8145–8150; Angew. Chem. 2019, 131, 8229–8234;
- 11cD. J. Babu, G. He, J. Hao, M. T. Vahdat, P. A. Schouwink, M. Mensi, K. V. Agrawal, Adv. Mater. 2019, 31, 1900855;
- 11dY. Ye, S. Xian, H. Cui, K. Tan, L. Gong, B. Liang, T. Pham, H. Pandey, R. Krishna, P. C. Lan, K. A. Forrest, B. Space, T. Thonhauser, J. Li, S. Ma, J. Am. Chem. Soc. 2022, 144, 1681–1689.
- 12
- 12aJ.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena, H.-C. Zhou, Nat. Commun. 2013, 4, 1538;
- 12bR. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J.-R. Li, Angew. Chem. Int. Ed. 2014, 53, 9775–9779; Angew. Chem. 2014, 126, 9933–9937;
- 12cK.-J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q.-Y. Zhang, M. J. Zaworotko, Science 2019, 366, 241–246;
- 12dL. Li, L. Guo, D. H. Olson, S. Xian, Z. Zhang, Q. Yang, K. Wu, Y. Yang, Z. Bao, Q. Ren, J. Li, Science 2022, 377, 335–339.
- 13
- 13aH. Zeng, X.-J. Xie, M. Xie, Y.-L. Huang, D. Luo, T. Wang, Y. Zhao, W. Lu, D. Li, J. Am. Chem. Soc. 2019, 141, 20390–20396;
- 13bH.-G. Hao, Y.-F. Zhao, D.-M. Chen, J.-M. Yu, K. Tan, S. Ma, Y. Chabal, Z.-M. Zhang, J.-M. Dou, Z.-H. Xiao, G. Day, H.-C. Zhou, T.-B. Lu, Angew. Chem. Int. Ed. 2018, 57, 16067–16071; Angew. Chem. 2018, 130, 16299–16303.
- 14
- 14aT. He, X.-J. Kong, Z.-X. Bian, Y.-Z. Zhang, G.-R. Si, L.-H. Xie, X.-Q. Wu, H. Huang, Z. Chang, X.-H. Bu, M. J. Zaworotko, Z.-R. Nie, J.-R. Li, Nat. Mater. 2022, 21, 689–695;
- 14bG.-D. Wang, R. Krishna, Y.-Z. Li, W.-J. Shi, L. Hou, Y.-Y. Wang, Z. Zhu, Angew. Chem. Int. Ed. 2022, 61, e202213015; Angew. Chem. 2022, 134, e202213015;
- 14cA. N. Hong, E. Kusumoputro, Y. Wang, H. Yang, Y. Chen, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2022, 61, e202116064; Angew. Chem. 2022, 134, e202116064.
- 15Y. Chai, X. Han, W. Li, S. Liu, S. Yao, C. Wang, W. Shi, I. da-Silva, P. Manuel, Y. Cheng, L. D. Daemen, A. J. Ramirez-Cuesta, C. C. Tang, L. Jiang, S. Yang, N. Guan, L. Li, Science 2020, 368, 1002–1006.
- 16H. Zeng, M. Xie, T. Wang, R.-J. Wei, X.-J. Xie, Y. Zhao, W. Lu, D. Li, Nature 2021, 595, 542–548.
- 17L. Yu, X. Han, H. Wang, S. Ullah, Q. Xia, W. Li, J. Li, I. da Silva, P. Manuel, S. Rudić, Y. Cheng, S. Yang, T. Thonhauser, J. Li, J. Am. Chem. Soc. 2021, 143, 19300–19305.
- 18A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137–140.
- 19H. Wang, X. Dong, V. Colombo, Q. Wang, Y. Liu, W. Liu, X.-L. Wang, X.-Y. Huang, D. M. Proserpio, A. Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088.
- 20B. Liang, X. Zhang, Y. Xie, R.-B. Lin, R. Krishna, H. Cui, Z. Li, Y. Shi, H. Wu, W. Zhou, B. Chen, J. Am. Chem. Soc. 2020, 142, 17795–17801.
- 21Y. Wang, N.-Y. Huang, X.-W. Zhang, H. He, R.-K. Huang, Z.-M. Ye, Y. Li, D.-D. Zhou, P.-Q. Liao, X.-M. Chen, J.-P. Zhang, Angew. Chem. Int. Ed. 2019, 58, 7692–7696; Angew. Chem. 2019, 131, 7774–7778.
- 22J. Li, X. Han, X. Kang, Y. Chen, S. Xu, G. L. Smith, E. Tillotson, Y. Cheng, L. J. McCormick Mcpherson, S. J. Teat, S. Rudić, A. J. Ramirez-Cuesta, S. J. Haigh, M. Schröder, S. Yang, Angew. Chem. Int. Ed. 2021, 60, 15541–15547; Angew. Chem. 2021, 133, 15669–15675.
- 23
- 23aY. Xie, Y. Shi, H. Cui, R.-B. Lin, B. Chen, Small Struct. 2022, 3, 2100125;
- 23bX.-W. Zhang, D.-D. Zhou, J.-P. Zhang, Chem 2021, 7, 1006–1019.
- 24Z. Zhang, Q. Ding, X. Cui, X.-M. Jiang, H. Xing, ACS Appl. Mater. Interfaces 2020, 12, 40229–40235.
- 25
- 25aZ. Chang, R.-B. Lin, Y. Ye, C. Duan, B. Chen, J. Mater. Chem. A 2019, 7, 25567–25572;
- 25bX. Wang, P. Zhang, Z. Zhang, L. Yang, Q. Ding, X. Cui, J. Wang, H. Xing, Ind. Eng. Chem. Res. 2020, 59, 3531–3537;
- 25cH. Wu, Y. Yuan, Y. Chen, F. Xu, D. Lv, Y. Wu, Z. Li, Q. Xia, AIChE J. 2020, 66, e16858.
- 26J. E. Bachman, M. T. Kapelewski, D. A. Reed, M. I. Gonzalez, J. R. Long, J. Am. Chem. Soc. 2017, 139, 15363–15370.
- 27Y.-S. Bae, C. Y. Lee, K. C. Kim, O. K. Farha, P. Nickias, J. T. Hupp, S. T. Nguyen, R. Q. Snurr, Angew. Chem. Int. Ed. 2012, 51, 1857–1860; Angew. Chem. 2012, 124, 1893–1896.
- 28E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610.
- 29
- 29aS.-Y. Kim, T.-U. Yoon, J. H. Kang, A.-R. Kim, T.-H. Kim, S.-I. Kim, W. Park, K. C. Kim, Y.-S. Bae, ACS Appl. Mater. Interfaces 2018, 10, 27521–27530;
- 29bJ. W. Yoon, A.-R. Kim, M. J. Kim, T.-U. Yoon, J.-H. Kim, Y.-S. Bae, Microporous Mesoporous Mater. 2019, 279, 271–277;
- 29cN. Lamia, M. Jorge, M. A. Granato, F. A. A. Paz, H. Chevreau, A. E. Rodrigues, Chem. Eng. Sci. 2009, 64, 3246–3259.
- 30
- 30aM. H. Mohamed, Y. Yang, L. Li, S. Zhang, J. P. Ruffley, A. G. Jarvi, S. Saxena, G. Veser, J. K. Johnson, N. L. Rosi, J. Am. Chem. Soc. 2019, 141, 13003–13007;
- 30bG. Chang, M. Huang, Y. Su, H. Xing, B. Su, Z. Zhang, Q. Yang, Y. Yang, Q. Ren, Z. Bao, B. Chen, Chem. Commun. 2015, 51, 2859–2862.
- 31
- 31aS. Geng, E. Lin, X. Li, W. Liu, T. Wang, Z. Wang, D. Sensharma, S. Darwish, Y. H. Andaloussi, T. Pham, P. Cheng, M. J. Zaworotko, Y. Chen, Z. Zhang, J. Am. Chem. Soc. 2021, 143, 8654–8660;
- 31bW. Gong, H. Cui, Y. Xie, Y. Li, X. Tang, Y. Liu, Y. Cui, B. Chen, J. Am. Chem. Soc. 2021, 143, 14869–14876.
- 32
- 32aJ. Pei, K. Shao, J.-X. Wang, H.-M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, G. Qian, Adv. Mater. 2020, 32, 1908275;
- 32bJ. Pei, X.-W. Gu, C.-C. Liang, B. Chen, B. Li, G. Qian, J. Am. Chem. Soc. 2022, 144, 3200–3209.
- 33
- 33aV. Niel, J. M. Martinez-Agudo, M. C. Muñoz, A. B. Gaspar, J. A. Real, Inorg. Chem. 2001, 40, 3838–3839;
- 33bJ. T. Culp, M. R. Smith, E. Bittner, B. Bockrath, J. Am. Chem. Soc. 2008, 130, 12427–12434;
- 33cM. M. Deshmukh, M. Ohba, S. Kitagawa, S. Sakaki, J. Am. Chem. Soc. 2013, 135, 4840–4849.
- 34Deposition Numbers 2045785 (for ZJU-75) and 2223576 (for C3H6@ZJU-75a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 35R. L. Hudson, P. A. Gerakines, Y. Y. Yarnall, R. T. Coones, Icarus 2021, 354, 114033.
- 36
- 36aB. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, H.-C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204–6216;
- 36bH. Yang, F. Peng, A. N. Hong, Y. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2021, 143, 14470–14474.
- 37E. Velasco, S. Xian, L. Yu, H. Wang, J. Li, Sep. Purif. Technol. 2022, 282, 120010.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.