Diethylzinc-Mediated Cross-Coupling Reactions between Dibromoketones and Monobromo Carbonyl Compounds
Aika Takeshima
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Taichi Kano
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan
Search for more papers by this authorAika Takeshima
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Taichi Kano
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan
Search for more papers by this authorAbstract
A novel route to synthesize 1,4-dicarbonyl compounds is described. α,α-Dibromoketones generate zinc enolates through a diethylzinc-mediated halogen-metal exchange and react with α-bromocarbonyl compounds to furnish 1,4-dicarbonyl compounds via a second generation of zinc enolates. This cross-coupling reaction is enabled by the chemoselective formation of zinc enolates from α,α-dibromoketones in the presence of α-bromocarbonyl compounds. Chiral 1,4-dicarbonyl compounds can be obtained via the enantioselective bromination of aldehydes using a chiral secondary amine catalyst and a subsequent cross-coupling reaction between the resulting chiral α-bromoaldehydes and α,α-dibromoacetophenones.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202217496-sup-0001-misc_information.pdf5.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Whittaker, C. D. Floyd, P. Brown, A. J. H. Gearing, Chem. Rev. 1999, 99, 2735–2776;
- 1bT. Fujisawa, K. Igeta, S. Odake, Y. Morita, J. Yasuda, T. Morikawa, Bioorg. Med. Chem. 2002, 10, 2569–2581;
- 1cM. P. DeMartino, K. Chen, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 11546–11560;
- 1dA. V. Gavai, C. Quesnelle, D. Norris, W.-C. Han, P. Gill, W. Shan, A. Balog, K. Chen, A. Tebben, R. Rampulla, D.-R. Wu, Y. Zhang, A. Mathur, R. White, A. Rose, H. Wang, Z. Yang, A. Ranasinghe, C. D'Arienzo, V. Guarino, L. Xiao, C. Su, G. Everlof, V. Arora, D. R. Shen, M. E. Cvijic, K. Menard, M.-L. Wen, J. Meredith, G. Trainor, L. J. Lombardo, R. Olson, P. S. Baran, J. T. Hunt, G. D. Vite, B. S. Fischer, R. A. Westhouse, F. Y. Lee, ACS Med. Chem. Lett. 2015, 6, 523–527.
- 2
- 2aC. Paal, Ber. Dtsch. Chem. Ges. 1884, 17, 2756–2767;
10.1002/cber.188401702228 Google Scholar
- 2bL. Knorr, Ber. Dtsch. Chem. Ges. 1884, 17, 2863–2870.
10.1002/cber.188401702254 Google Scholar
- 3
- 3aD. Enders, J. Han, A. Henseler, Chem. Commun. 2008, 3989–3991;
- 3bD. Enders, J. Han, Synthesis 2008, 3864–3868;
- 3cQ. Liu, S. Perreault, T. Rovis, J. Am. Chem. Soc. 2008, 130, 14066–14067;
- 3dQ. Liu, T. Rovis, Org. Lett. 2009, 11, 2856–2859;
- 3eC. Dresen, M. Richter, M. Pohl, S. Lüdeke, M. Müller, Angew. Chem. Int. Ed. 2010, 49, 6600–6603; Angew. Chem. 2010, 122, 6750–6753;
- 3fD. A. DiRocco, T. Rovis, J. Am. Chem. Soc. 2011, 133, 10402–10405;
- 3gX. Fang, X. Chen, H. Lv, Y. R. Chi, Angew. Chem. Int. Ed. 2011, 50, 11782–11785; Angew. Chem. 2011, 123, 11986–11989;
- 3hT. Jousseaume, N. E. Wurz, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 1410–1414; Angew. Chem. 2011, 123, 1446–1450;
- 3iN. E. Wurz, C. G. Daniliuc, F. Glorius, Chem. Eur. J. 2012, 18, 16297–16301.
- 4
- 4aG. Goti, B. Bieszczad, A. Vega-Peñaloza, P. Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 1213–1217; Angew. Chem. 2019, 131, 1226–1230;
- 4bJ.-J. Zhao, H.-H. Zhang, X. Shen, S. Yu, Org. Lett. 2019, 21, 913–916;
- 4cY. Kuang, K. Wang, X. Shi, X. Huang, E. Meggers, J. Wu, Angew. Chem. Int. Ed. 2019, 58, 16859–16863; Angew. Chem. 2019, 131, 17015–17019.
- 5
- 5aM. R. Nahm, J. R. Potnick, P. S. White, J. S. Johnson, J. Am. Chem. Soc. 2006, 128, 2751–2756;
- 5bM. Fernández, U. Uria, J. L. Vicario, E. Reyes, L. Carrillo, J. Am. Chem. Soc. 2012, 134, 11872–11875.
- 6
- 6aN. Kise, K. Tokioka, Y. Aoyama, J. Org. Chem. 1995, 60, 1100–1101;
- 6bP. S. Baran, M. P. DeMartino, Angew. Chem. Int. Ed. 2006, 45, 7083–7086; Angew. Chem. 2006, 118, 7241–7244;
- 6cD. Kaldre, I. Klose, N. Maulide, Science 2018, 361, 664–667.
- 7For selected examples of the catalytic asymmetric synthesis of 1,4-dicarbonyl compounds involving C2−C3 bond formation, see:
- 7aH.-Y. Jang, J.-B. Hong, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004–7005;
- 7bD. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77–80;
- 7cS. Huang, L. Kötzner, C. K. De, B. List, J. Am. Chem. Soc. 2015, 137, 3446–3449;
- 7dH. Zhang, Z. Wang, Z. Wang, Y. Chu, S. Wang, X.-P. Hui, ACS Catal. 2022, 12, 5510–5516;
- 7eX. Huang, Q. Zhang, J. Lin, K. Harms, E. Meggers, Nat. Catal. 2019, 2, 34–40;
- 7fZ.-H. Wang, P.-S. Gao, X. Wang, J.-Q. Gao, X.-T. Xu, Z. He, C. Ma, T.-S. Mei, J. Am. Chem. Soc. 2021, 143, 15599–15605;
- 7gC.-J. Long, H. Cao, B.-K. Zhao, Y.-F. Tan, Y.-H. He, C.-S. Huang, Z. Guan, Angew. Chem. Int. Ed. 2022, 61, e202203666; Angew. Chem. 2022, 134, e202203666;
- 7hY. Zhu, L. Zhang, S. Luo, J. Am. Chem. Soc. 2014, 136, 14642–14645;
- 7iD. Spinnato, B. Schweitzer-Chaput, G. Goti, M. Ošeka, P. Melchiorre, Angew. Chem. Int. Ed. 2020, 59, 9485–9490; Angew. Chem. 2020, 132, 9572–9577.
- 8
- 8aM. Yasuda, T. Oh-hata, I. Shibata, A. Baba, H. J. Matsuda, J. Chem. Soc. Perkin Trans. 1 1993, 859–865;
- 8bM. Yasuda, Y. Katoh, I. Shibata, A. Baba, H. Matsuda, N. Sonoda, J. Org. Chem. 1994, 59, 4386–4392;
- 8cM. Yasuda, S. Tsuji, Y. Shigeyoshi, A. Baba, J. Am. Chem. Soc. 2002, 124, 7440–7447;
- 8dC. Liu, Y. Deng, J. Wang, Y. Yang, S. Tang, A. Lei, Angew. Chem. Int. Ed. 2011, 50, 7337–7341; Angew. Chem. 2011, 123, 7475–7479;
- 8eR. Noyori, I. Nishida, J. Sakata, Tetrahedron Lett. 1980, 21, 2085–2088;
- 8fR. Noyori, I. Nishida, J. Sakata, J. Am. Chem. Soc. 1983, 105, 1598–1608;
- 8gI. Kuwajima, E. Nakamura, M. Shimizu, J. Am. Chem. Soc. 1982, 104, 1025–1030;
- 8hJ. Luo, Q. Jiang, H. Chen, Q. Tang, RSC Adv. 2015, 5, 67901–67908;
- 8iE. Baciocchi, E. Muraglia, Tetrahedron Lett. 1994, 35, 2763–2766;
- 8jE. Arceo, E. Montroni, P. Melchiorre, Angew. Chem. Int. Ed. 2014, 53, 12064–12068; Angew. Chem. 2014, 126, 12260–12264;
- 8kS.-i. Usugi, H. Yorimitsu, H. Shinokubo, K. Oshima, Bull. Chem. Soc. Jpn. 2002, 75, 2049–2052;
- 8lN. Esumi, K. Suzuki, Y. Nishimoto, M. Yasuda, Org. Lett. 2016, 18, 5704–5707;
- 8mA. Franchino, A. Rinaldi, D. J. Dixon, RSC Adv. 2017, 7, 43655–43659;
- 8nN. Esumi, K. Suzuki, Y. Nishimoto, M. Yasuda, Chem. Eur. J. 2018, 24, 312–316;
- 8oQ. Liu, R.-G. Wang, H.-J. Song, Y.-X. Liu, Q.-M. Wang, Adv. Synth. Catal. 2020, 362, 4391–4396;
- 8pA. Kurose, Y. Ishida, G. Hirata, T. Nishikata, Angew. Chem. Int. Ed. 2021, 60, 10620–10625; Angew. Chem. 2021, 133, 10714–10719;
- 8qS. Das, T. Mandal, S. D. Sarkar, Adv. Synth. Catal. 2022, 364, 755–765.
- 9
- 9aM. Harmata, S. K. Ghosh, X. Hong, S. Wacharasindhu, P. Kirchhoefer, J. Am. Chem. Soc. 2003, 125, 2058–2059;
- 9bL. Villar, U. Uria, J. I. Martínez, L. Prieto, E. Reyes, L. Carrillo, J. L. Vicario, Angew. Chem. Int. Ed. 2017, 56, 10535–10538; Angew. Chem. 2017, 129, 10671–10674;
- 9cJ. Huang, R. P. Hsung, J. Am. Chem. Soc. 2005, 127, 50–51;
- 9dS. M. Banik, A. Levina, A. M. Hyde, E. N. Jacobsen, Science 2017, 358, 761–764;
- 9eC. Liu, E. Z. Oblak, M. N. Vander Wal, A. K. Dilger, D. K. Almstead, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 2134–2137;
- 9fM. Topinka, K. Zawatzky, C. L. Barnes, C. J. Welch, M. Harmata, Org. Lett. 2017, 19, 4106–4109;
- 9gS. Mondal, F. Dumur, D. Gigmes, M. P. Sibi, M. P. Bertrand, M. Nechab, Chem. Rev. 2022, 122, 5842–5976;
- 9hM. J. Genzink, J. B. Kidd, W. B. Swords, T. P. Yoon, Chem. Rev. 2022, 122, 1654–1716;
- 9iJ. Grosskopf, T. Kratz, T. Rigotti, T. Bach, Chem. Rev. 2022, 122, 1626–1653;
- 9jD. A. Nagib, Chem. Rev. 2022, 122, 15989–15992.
- 10A. Takeshima, M. Shimogaki, T. Kano, K. Maruoka, ACS Catal. 2020, 10, 5959–5963.
- 11For other asymmetric brominations of aldehydes, see:
- 11aS. Bertelsen, N. Halland, S. Bachmann, M. Marigo, A. Braunton, K. A. Jørgensen, Chem. Commun. 2005, 4821–4823;
- 11bJ. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjærsgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296–18304;
- 11cT. Kano, F. Shirozu, K. Maruoka, Chem. Commun. 2010, 46, 7590–7592;
- 11dG. Hutchinson, C. Alamillo-Ferrer, M. Fernández-Pascual, J. Burés, J. Org. Chem. 2022, 87, 7968–7974.
- 12
- 12aH. Normant, J. Organomet. Chem. 1975, 100, 189–203;
- 12bP. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302–4320; Angew. Chem. 2003, 115, 4438–4456;
- 12cY. Nagai, K. Yamazaki, I. Shiojima, J. Organomet. Chem. 1967, 9, 25–26;
- 12d Comprehensive Handbook of Chemical Bond Energies (Ed.: Y.-R. Luo), CRC Press, Taylor and Francis Group, Boca Raton, 2007.
10.1201/9781420007282 Google Scholar
- 13
- 13aT.-J. Lu, S.-W. Liu, S.-H. Wang, J. Org. Chem. 1993, 58, 7945–7947;
- 13bY. Aoki, K. Oshima, K. Utimoto, Synlett 1995, 1995, 1071–1072;
10.1055/s-1995-5188 Google Scholar
- 13cS. Araki, T. Hirashita, K. Shimizu, T. Ikeda, Y. Butsugan, Tetrahedron 1996, 52, 2803–2816;
- 13dB. Batanero, G. Pastor, F. Barba, Acta Chem. Scand. 1999, 53, 910–912;
- 13eV. V. Shchepin, Y. G. Stepanyan, P. S. Silaichev, M. A. Ezhikova, M. I. Kodess, Russ. J. Org. Chem. 2007, 43, 1002–1007.
- 14The yield and ee of (R)-2-bromo-3-phenylpropanal (2 a) were measured after reduction to the corresponding alcohol using NaBH4.
- 15
- 15aC. Homma, A. Takeshima, T. Kano, K. Maruoka, Chem. Sci. 2021, 12, 1445–1450;
- 15bS. Meninno, C. Volpe, A. Lattanzia, Adv. Synth. Catal. 2016, 358, 2845–2848.
- 16
- 16aA. V. Kel'in, O. G. Kulinkovich, Synthesis 1996, 1996, 330–332;
10.1055/s-1996-4215 Google Scholar
- 16bN. M. Nevar, A. V. Kel'in, O. G. Kulinkovich, Synthesis 2000, 2000, 1259–1262.
10.1055/s-2000-6418 Google Scholar
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.