Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides
Hanlin Wei
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorDr. Hao Chen
Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jianzhong Chen
Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ilya D. Gridnev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991 Russian Federation
Search for more papers by this authorCorresponding Author
Prof. Dr. Wanbin Zhang
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorHanlin Wei
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorDr. Hao Chen
Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jianzhong Chen
Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ilya D. Gridnev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991 Russian Federation
Search for more papers by this authorCorresponding Author
Prof. Dr. Wanbin Zhang
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 P. R. China
Search for more papers by this authorAbstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202214990-sup-0001-misc_information.pdf19.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. G. Allen, F. R. Atherton, M. J. Hall, C. H. Hassall, S. W. Holmes, R. W. Lambert, L. J. Nisbet, P. S. Ringrose, Nature 1978, 272, 56;
- 1bG. H. Hakimelahi, A. A. Jarrahpour, Helv. Chim. Acta 1989, 72, 1501;
- 1cD. J. Hunter, J. Bird, F. Cassidy, R. C. De Mello, G. P. Harper, E. H. Karran, R. E. Markwell, A. J. Miles-Williams, R. W. Ward, Bioorg. Med. Chem. Lett. 1994, 4, 2833;
- 1dY. P. Auberson, P. Acklin, S. Bischoff, R. Moretti, S. Ofner, M. Schmutz, S. J. Veenstra, Bioorg. Med. Chem. Lett. 1999, 9, 249;
- 1eP. W. N. M. van Leeuwen, P. C. J. Kamer, C. Claver, O. Pàmies, M. Diéguez, Chem. Rev. 2011, 111, 2077.
- 2
- 2aK. W. Jung, K. D. Janda, P. J. Sanfilippo, M. Wachter, Bioorg. Med. Chem. Lett. 1996, 6, 2281;
- 2bN. A. Bondarenko, I. N. Lermontova, G. N. Bondarenko, N. S. Gulyukina, T. M. Dolgina, S. O. Bachurin, I. P. Beletskaya, Pharm. Chem. J. 2003, 37, 226;
- 2cM. R. M. D. Charandabi, M. L. Ettel, M. P. Kaushik, J. H. Huffman, K. W. Morse, Phosphorus Sulfur Silicon Relat. Elem. 1989, 44, 223;
- 2dM. Andaloussi, L. M. Henriksson, A. Wieckowska, M. Lindh, C. Björkelid, A. M. Larsson, S. Suresh, H. Iyer, B. R. Srinivasa, T. Bergfors, T. Unge, S. L. Mowbray, M. Larhed, T. A. Jones, A. Karlén, J. Med. Chem. 2011, 54, 4964;
- 2eT. Hayashi, Acc. Chem. Res. 2000, 33, 354;
- 2fW. Zhang, Y. Chi, X. Zhang, Acc. Chem. Res. 2007, 40, 1278;
- 2gY.-N. Ma, S.-X. Li, S.-D. Yang, Acc. Chem. Res. 2017, 50, 1480.
- 3
- 3aM. O. Shulyupin, G. Franciò, I. P. Beletskaya, W. Leitner, Adv. Synth. Catal. 2005, 347, 667;
- 3bS. E. Denmark, C.-T. Chen, J. Am. Chem. Soc. 1995, 117, 11879;
- 3cY. L. Bennani, S. Hanessian, Tetrahedron 1996, 52, 13837;
- 3dJ. Omelanzcuk, A. E. Sopchik, S.-G. Lee, K. Akutagawa, S. M. Cairns, W. G. Bentrude, J. Am. Chem. Soc. 1988, 110, 6908;
- 3eS. M. Cairns, W. G. Bentrude, Tetrahedron Lett. 1989, 30, 1025;
- 3fW. Bhanthumnavin, A. Arif, W. G. Bentrude, J. Org. Chem. 1998, 63, 7753.
- 4Reviews for transition metal-catalyzed asymmetric hydrogenation:
- 4aJ.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713;
- 4bD.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev. 2012, 112, 2557;
- 4cZ. Zhang, N. A. Butt, W. Zhang, Chem. Rev. 2016, 116, 14769;
- 4dC. S. G. Seo, R. H. Morris, Organometallics 2019, 38, 47;
- 4eA. N. Kim, B. M. Stoltz, ACS Catal. 2020, 10, 13834;
- 4fH. Wang, J. Wen, X. Zhang, Chem. Rev. 2021, 121, 7530;
- 4gF. Wan, W. Tang, Chin. J. Chem. 2021, 39, 954;
- 4hB.-R. Shao, L. Shi, Y.-G. Zhou, Chem. Commun. 2021, 57, 12741;
- 4iG. S. Caleffi, F. C. Demidoff, C. Nájera, P. R. R. Costa, Org. Chem. Front. 2022, 9, 1165;
- 4jA. Cabré, X. Verdaguer, A. Riera, Chem. Rev. 2022, 122, 269;
- 4kA. J. Burke, H.-J. Federsel, G. J. Hermann, J. Org. Chem. 2022, 87, 1898.
- 5Ru:
- 5aJ.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.-P. Genêt, I. P. Beletskaya, T. M. Dolgina, Tetrahedron Lett. 1998, 39, 3473;
- 5bV. Beghetto, U. Matteoli, A. Scrivanti, Chem. Commun. 2000, 155;
- 5cN. S. Goulioukina, T. M. Dolgina, I. P. Beletskaya, J.-C. Henry, D. Lavergne, V. Ratovelomanana-Vidal, J.-P. Genêt, Tetrahedron: Asymmetry 2001, 12, 319; Rh:
- 5dM. J. Burk, T. A. Stammers, J. A. Straub, Org. Lett. 1999, 1, 387;
- 5eD.-Y. Wang, X.-P. Hu, J. Deng, S.-B. Yu, Z.-C. Duan, Z. Zheng, J. Org. Chem. 2009, 74, 4408;
- 5fH. Fernández-Pérez, P. Lenartowicz, L. Carreras, A. Grabulosa, P. Kafarski, A. Vidal-Ferran, J. Org. Chem. 2020, 85, 14779; Ir:
- 5gN. S. Goulioukina, T. M. Dolgina, G. N. Bondarenko, I. P. Beletskaya, M. M. Ilyin, V. A. Davankovb, A. Pfaltz, Tetrahedron: Asymmetry 2003, 14, 1397;
- 5hP. Cheruku, A. Paptchikhine, T. L. Church, P. G. Andersson, J. Am. Chem. Soc. 2009, 131, 8285;
- 5iX. Liu, Z. Han, Z. Wang, K. Ding, Sci. China Chem. 2014, 57, 1073.
- 6Reviews:
- 6aP. J. Chirik, Acc. Chem. Res. 2015, 48, 1687;
- 6bY.-Y. Li, S.-L. Yu, W.-Y. Shen, J.-X. Gao, Acc. Chem. Res. 2015, 48, 2587;
- 6cR. H. Morris, Acc. Chem. Res. 2015, 48, 1494;
- 6dZ. Zhang, N. A. Butt, M. Zhou, D. Liu, W. Zhang, Chin. J. Chem. 2018, 36, 443;
- 6eW. Ai, R. Zhong, X. Liu, Q. Liu, Chem. Rev. 2019, 119, 2876;
- 6fJ. Wen, F. Wang, X. Zhang, Chem. Soc. Rev. 2021, 50, 3211. The latest representative articles:
- 6gC. Liu, M. Wang, S. Liu, Y. Wang, Y. Peng, Y. Lan, Q. Liu, Angew. Chem. Int. Ed. 2021, 60, 5108; Angew. Chem. 2021, 133, 5168;
- 6hP. Lu, X. Ren, H. Xu, D. Lu, Y. Sun, Z. Lu, J. Am. Chem. Soc. 2021, 143, 12433;
- 6iX. Du, Y. Xiao, Y. Yang, Y.-N. Duan, F. Li, Q. Hu, L. W. Chung, G.-Q. Chen, X. Zhang, Angew. Chem. Int. Ed. 2021, 60, 11384; Angew. Chem. 2021, 133, 11485;
- 6jL. N. Mendelsohn, L. Pavlovic, H. Zhong, M. R. Friedfeld, M. Shevlin, K. H. Hopmann, Paul J. Chirik, J. Am. Chem. Soc. 2022, 144, 15764;
- 6kC. Liu, M. Wang, Y. Xu, Y. Li, Q. Liu, Angew. Chem. Int. Ed. 2022, 61, e202202814; Angew. Chem. 2022, 134, e202202;
- 6lY. Wang, S. Liu, H. Yang, H. Li, Y. Lan, Q. Liu, Nat. Chem. 2022, 14, 1233;
- 6mP. Lu, H. Wang, Y. Mao, X. Hong, Z. Lu, J. Am. Chem. Soc. 2022, 144, 17359.
- 7
- 7aY. Hamada, Y. Koseki, T. Fujii, T. Maeda, T. Hibino, K. Makino, Chem. Commun. 2008, 6206;
- 7bT. Hibino, K. Makino, T. Sugiyama, Y. Hamada, ChemCatChem 2009, 1, 237.
- 8Selected papers for asymmetric transfer hydrogenation:
- 8aP. Yang, H. Xu, J. Zhou, Angew. Chem. Int. Ed. 2014, 53, 12210; Angew. Chem. 2014, 126, 12406;
- 8bH. Xu, P. Yang, P. Chuanprasit, H. Hirao, J. Zhou, Angew. Chem. Int. Ed. 2015, 54, 5112; Angew. Chem. 2015, 127, 5201;
- 8cP. Yang, L. H. Lim, P. Chuanprasit, H. Hirao, J. Zhou, Angew. Chem. Int. Ed. 2016, 55, 12083; Angew. Chem. 2016, 128, 12262;
- 8dX. Zhao, H. Xu, X. Huang, J. Zhou, Angew. Chem. Int. Ed. 2019, 58, 292; Angew. Chem. 2019, 131, 298;
- 8eP. Yang, Y. Sun, K. Fu, L. Zhang, G. Yang, J. Yue, Y. Ma, J. Zhou, B. Tang, Angew. Chem. Int. Ed. 2022, 61, e202111778; Angew. Chem. 2022, 134, e202111778.
- 9M. Shevlin, M. R. Friedfeld, H. Sheng, N. A. Pierson, J. M. Hoyt, L.-C. Campeau, P. J. Chirik, J. Am. Chem. Soc. 2016, 138, 3562.
- 10Selected papers:
- 10aW. Gao, H. Lv, T. Zhang, Y. Yang, L. W. Chung, Y.-D. Wu, X. Zhang, Chem. Sci. 2017, 8, 6419;
- 10bY.-Q. Guan, Z. Han, X. Li, C. You, X. Tan, H. Lv, X. Zhang, Chem. Sci. 2019, 10, 252;
- 10cC. You, X. Li, Q. Gong, J. Wen, X. Zhang, J. Am. Chem. Soc. 2019, 141, 14560;
- 10dG. Liu, X. Zhang, H. Wang, H. Cong, X. Zhang, X.-Q. Dong, Chem. Commun. 2020, 56, 4934;
- 10eY. Liu, Z. Yi, X. Yang, H. Wang, C. Yin, M. Wang, X.-Q. Dong, X. Zhang, ACS Catal. 2020, 10, 11153;
- 10fG. Liu, K. Tian, C. Li, C. You, X. Tan, H. Zhang, X. Zhang, X.-Q. Dong, Org. Lett. 2021, 23, 668.
- 11
- 11aB. Li, J. Chen, Z. Zhang, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2019, 58, 7329; Angew. Chem. 2019, 131, 7407;
- 11bY. Hu, J. Chen, B. Li, Z. Zhang, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5371; Angew. Chem. 2020, 132, 5409;
- 11cD. Liu, B. Li, J. Chen, I. D. Gridnev, D. Yan, W. Zhang, Nat. Commun. 2020, 11, 5935;
- 11dB. Li, D. Liu, Y. Hu, J. Chen, Z. Zhang, W. Zhang, Eur. J. Org. Chem. 2021, 3421;
- 11eB. Li, J. Chen, D. Liu, I. D. Gridnev, W. Zhang, Nat. Chem. 2022, 14, 920.
- 12
- 12aY. Zhao, Y.-X. Ding, B. Wu, Y.-G. Zhou, J. Org. Chem. 2021, 86, 10788;
- 12bC.-Q. Deng, J. Liu, J.-H. Luo, L.-J. Gan, J. Deng, Y. Fu, Angew. Chem. Int. Ed. 2022, 61, e202115983; Angew. Chem. 2022, 134, e202115983;
- 12cC.-Q. Deng, J. Deng, Org. Lett. 2022, 24, 2494;
- 12dG. Xiao, C. Xie, Q. Guo, G. Zi, G. Hou, Y. Huang, Org. Lett. 2022, 24, 2722;
- 12eG. Xiao, C. Xie, Q. Guo, G. Zi, G. Hou, Y. Huang, Org. Chem. Front. 2022, 9, 4472;
- 12fS. Sudhakaran, P. G. Shinde, E. K. Aratikatla, S. H. Kaulage, P. Rana, R. S. Parit, D. S. Kavale, B. Senthilkumar, B. Punji, Chem. Asian J. 2022, 17, e202101208.
- 13O. Pàmies, P. G. Andersson, M. Diéguez, Chem. Eur. J. 2010, 16, 14232.
- 14Selected papers:
- 14aY. Liu, W. Zhang, Angew. Chem. Int. Ed. 2013, 52, 2203; Angew. Chem. 2013, 125, 2259;
- 14bJ. Chen, D. Liu, N. Butt, C. Li, D. Fan, Y. Liu, W. Zhang, Angew. Chem. Int. Ed. 2013, 52, 11632; Angew. Chem. 2013, 125, 11846;
- 14cY. Liu, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2014, 53, 1901; Angew. Chem. 2014, 126, 1932;
- 14dQ. Hu, Z. Zhang, Y. Liu, T. Imamoto, W. Zhang, Angew. Chem. Int. Ed. 2015, 54, 2260; Angew. Chem. 2015, 127, 2288;
- 14eJ. Chen, Z. Zhang, D. Liu, W. Zhang, Angew. Chem. Int. Ed. 2016, 55, 8444; Angew. Chem. 2016, 128, 8584;
- 14fJ. Chen, Z. Zhang, B. Li, F. Li, Y. Wang, M. Zhao, I. D. Gridnev, T. Imamoto, W. Zhang, Nat. Commun. 2018, 9, 5000;
- 14gJ. Zhang, J. Jia, X. Zeng, Y. Wang, Z. Zhang, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2019, 58, 11505; Angew. Chem. 2019, 131, 11629;
- 14hY. Hu, Z. Zhang, J. Zhang, Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2019, 58, 15767; Angew. Chem. 2019, 131, 15914;
- 14iY. Hu, Z. Zhang, Y. Liu, W. Zhang, Angew. Chem. Int. Ed. 2021, 60, 16989; Angew. Chem. 2021, 133, 17126;
- 14jY. Xu, D. Liu, Y. Deng, Y. Zhou, W. Zhang, Angew. Chem. Int. Ed. 2021, 60, 23602; Angew. Chem. 2021, 133, 23794;
- 14kJ. Zhang, T. Chen, Y. Wang, F. Zhou, Z. Zhang, I. D. Gridnev, W. Zhang, Nat. Sci. 2021, 43, e10021.
- 15Deposition Number 2065281 (for 2 q) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 16
- 16aY. Suzuma, T. Yamamoto, T. Ohta, Y. Ito, Chem. Lett. 2007, 36, 470;
- 16bL. Ling, J. Hu, Y. Huo, H. Zhang, Tetrahedron 2017, 73, 86.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.