A Bifunctional CdS/MoO2/MoS2 Catalyst Enhances Photocatalytic H2 Evolution and Pyruvic Acid Synthesis
Dr. Chuanbiao Bie
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, P. R. China
Search for more papers by this authorDr. Bicheng Zhu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Linxi Wang
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Huogen Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
Search for more papers by this authorDr. Chenhui Jiang
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei, P. R. China
Search for more papers by this authorProf. Tao Chen
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jiaguo Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, P. R. China
Search for more papers by this authorDr. Chuanbiao Bie
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, P. R. China
Search for more papers by this authorDr. Bicheng Zhu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Linxi Wang
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Huogen Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
Search for more papers by this authorDr. Chenhui Jiang
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei, P. R. China
Search for more papers by this authorProf. Tao Chen
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jiaguo Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, P. R. China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, P. R. China
Search for more papers by this authorAbstract
The best use of photogenerated electrons and holes is crucial to boosting photocatalytic activity. Herein, a bifunctional dual-cocatalyst-modified photocatalyst is constructed based on CdS/MoO2/MoS2 hollow spheres for hydrogen evolution coupled with selective pyruvic acid (PA) production from lactic acid (LA) oxidation. MoS2 and MoO2 are simultaneously obtained from the conversion of CdMoO4 in one step. In a photocatalytic process, the MoS2 and MoO2 function as the reduction and oxidation centers on which photogenerated electrons and holes accumulate and are used for hydrogen evolution reaction (HER) and PA synthesis, respectively. By monitoring the intermediates, a two-step single-electron route for PA production is proposed, initiated by the cleavage of the α-C(sp3)−H bond in the LA. The conversion of LA and the selectivity of PA can reach ca. 29 % and 95 % after a five-hour reaction, respectively.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212045-sup-0001-misc_information.pdf7.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Grewe, M. Meggouh, H. Tuysuz, Chem. Asian J. 2016, 11, 22.
- 2
- 2aC. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 2021, 33, 2100317;
- 2bZ. Li, W. Huang, J. Liu, K. Lv, Q. Li, ACS Catal. 2021, 11, 8510;
- 2cP. Zhou, Q. Zhang, Y. Chao, L. Wang, Y. Li, H. Chen, L. Gu, S. Guo, Chem 2021, 7, 1033;
- 2dM. Matsumura, Y. Saho, H. Tsubomura, J. Phys. Chem. 1983, 87, 3807.
- 3X. Liu, M. Sayed, C. Bie, B. Cheng, B. Hu, J. Yu, L. Zhang, J. Materiomics 2021, 7, 419.
- 4P. Zhou, Q. Zhang, Z. Xu, Q. Shang, L. Wang, Y. Chao, Y. Li, H. Chen, F. Lv, Q. Zhang, L. Gu, S. Guo, Adv. Mater. 2020, 32, 1904249.
- 5
- 5aZ. Wang, L. Wang, B. Cheng, H. Yu, J. Yu, Small Methods 2021, 5, 2100979;
- 5bC. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Adv. Mater. 2021, 33, 2003521.
- 6
- 6aK. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi, K. Domen, Angew. Chem. Int. Ed. 2010, 49, 4096; Angew. Chem. 2010, 122, 4190;
- 6bB. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A. A. Al-Ghamdi, S. Wageh, Appl. Catal. B 2021, 288, 119994;
- 6cB. Qiu, M. Du, Y. Ma, Q. Zhu, M. Xing, J. Zhang, Energy Environ. Sci. 2021, 14, 5260.
- 7
- 7aZ. Li, Y. Ma, X. Hu, E. Liu, J. Fan, Chin. J. Catal. 2019, 40, 434;
- 7bY. Ma, R. Chong, F. Zhang, Q. Xu, S. Shen, H. Han, C. Li, Phys. Chem. Chem. Phys. 2014, 16, 17734.
- 8
- 8aN. Serpone, A. V. Emeline, V. K. Ryabchuk, V. N. Kuznetsov, Y. M. Artem'ev, S. Horikoshi, ACS Energy Lett. 2016, 1, 931;
- 8bC. Bie, L. Wang, J. Yu, Chem 2022, 8, 1567.
- 9T. Lu, Z. Yang, H. Li, H. Chen, J. Xu, C. C. Xu, J. Wang, Z. Li, Y. Zhang, J. Catal. 2022, 410, 103.
- 10
- 10aZ. Hu, G. Liu, X. Chen, Z. Shen, J. C. Yu, Adv. Funct. Mater. 2016, 26, 4445;
- 10bQ. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai, W. Yi, J. Liu, J. Han, G. Xi, Nat. Commun. 2017, 8, 14903.
- 11X. Xing, Q. Zhang, Z. Huang, Z. Lu, J. Zhang, H. Li, H. Zeng, T. Zhai, Small 2016, 12, 874.
- 12
- 12aB. Chakraborty, H. S. S. R. Matte, A. K. Sood, C. N. R. Rao, J. Raman Spectrosc. 2013, 44, 92;
- 12bX. Liu, K. Ni, C. Niu, R. Guo, W. Xi, Z. Wang, J. Meng, J. Li, Y. Zhu, P. Wu, Q. Li, J. Luo, X. Wu, L. Mai, ACS Catal. 2019, 9, 2275;
- 12cY. Jin, H. Wang, J. Li, X. Yue, Y. Han, P. K. Shen, Y. Cui, Adv. Mater. 2016, 28, 3785;
- 12dZ. Deng, Y. Hu, D. Ren, S. Lin, H. Jiang, C. Li, Chem. Commun. 2015, 51, 13838.
- 13H. Wu, X. Zhou, J. Li, X. Li, B. Li, W. Fei, J. Zhou, J. Yin, W. Guo, Small 2018, 14, 1802276.
- 14
- 14aX. Li, S. Guo, W. Li, X. Ren, J. Su, Q. Song, A. J. Sobrido, B. Wei, Nano Energy 2019, 57, 388;
- 14bL. Wang, Z. Wang, H.-Y. Wang, G. Grinblat, Y.-L. Huang, D. Wang, X.-H. Ye, X.-B. Li, Q. Bao, A.-S. Wee, S. A. Maier, Q.-D. Chen, M.-L. Zhong, C.-W. Qiu, H.-B. Sun, Nat. Commun. 2017, 8, 13906.
- 15C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 2019, 31, 1902868.
- 16L. Wang, X. Liu, J. Luo, X. Duan, J. Crittenden, C. Liu, S. Zhang, Y. Pei, Y. Zeng, X. Duan, Angew. Chem. Int. Ed. 2017, 56, 7610; Angew. Chem. 2017, 129, 7718.
- 17J. R. González, R. Alcantara, J. L. Tirado, A. J. Fielding, R. A. W. Dryfe, Chem. Mater. 2017, 29, 5886.
- 18
- 18aA. Bruix, H. G. Füchtbauer, A. K. Tuxen, A. S. Walton, M. Andersen, S. Porsgaard, F. Besenbacher, B. Hammer, J. V. Lauritsen, ACS Nano 2015, 9, 9322;
- 18bK. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, ACS Nano 2014, 8, 7078.
- 19Z. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520.
- 20R. Chen, F. Fan, T. Dittrich, C. Li, Chem. Soc. Rev. 2018, 47, 8238.
- 21A. Gellé, T. Jin, L. de la Garza, G. D. Price, L. V. Besteiro, A. Moores, Chem. Rev. 2020, 120, 986.
- 22F. Meng, J. Li, S. K. Cushing, M. Zhi, N. Wu, J. Am. Chem. Soc. 2013, 135, 10286.
- 23F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 2020, 11, 4613.
- 24
- 24aR. Berera, R. van Grondelle, J. T. M. Kennis, Photosynth. Res. 2009, 101, 105;
- 24bS. Bai, J. Jiang, Q. Zhang, Y. Xiong, Chem. Soc. Rev. 2015, 44, 2893.
- 25C. M. Wolff, P. D. Frischmann, M. Schulze, B. J. Bohn, R. Wein, P. Livadas, M. T. Carlson, F. Jaeckel, J. Feldmann, F. Wuerthner, J. K. Stolarczyk, Nat. Energy 2018, 3, 862.
- 26J. M. Vanderkooi, J. L. Dashnau, B. Zelent, BBA-Proteins Proteomics 2005, 1749, 214.
- 27Y. Nosaka, A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.
- 28X. Cao, Z. Chen, R. Lin, W. Cheong, S. Liu, J. Zhang, Q. Peng, C. Chen, T. Han, X. Tong, Y. Wang, R. Shen, W. Zhu, D. Wang, Y. Li, Nat. Catal. 2018, 1, 704.
- 29
- 29aL. Chang, L. V. Besteiro, J. Sun, E. Y. Santiago, S. K. Gray, Z. Wang, A. O. Govorov, ACS Energy Lett. 2019, 4, 2552;
- 29bN. Zhang, C. Han, X. Fu, Y.-J. Xu, Chem 2018, 4, 1832.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.