Engineering Supramolecular Binding Sites in a Chemically Stable Metal-Organic Framework for Simultaneous High C2H2 Storage and Separation
Kai Shao
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Hui-Min Wen
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
These authors contributed equally to this work.
Search for more papers by this authorCong-Cong Liang
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiaoyan Xiao
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiao-Wen Gu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698 USA
Search for more papers by this authorProf. Guodong Qian
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorKai Shao
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Hui-Min Wen
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
These authors contributed equally to this work.
Search for more papers by this authorCong-Cong Liang
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiaoyan Xiao
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiao-Wen Gu
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698 USA
Search for more papers by this authorProf. Guodong Qian
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorAbstract
Developing porous materials to overcome the trade-off between adsorption capacity and selectivity for C2H2/CO2 separation remains a challenge. Herein, we report a stable HKUST-1-like MOF (ZJU-50a), featuring large cages decorated with high density of supramolecular binding sites to achieve both high C2H2 storage and selectivity. ZJU-50a exhibits one of the highest C2H2 storage capacity (192 cm3 g−1) and concurrently high C2H2/CO2 selectivity (12) at 298 K and 1 bar. Single-crystal X-ray diffraction studies on gas-loaded ZJU-50a crystal unveil that the incorporated supramolecular binding sites can selectively take up C2H2 molecule but not CO2 to result in both high C2H2 storage and selectivity. Breakthrough experiments validated its separation performance for C2H2/CO2 mixtures, providing a high C2H2 recovery capacity of 84.2 L kg−1 with 99.5 % purity. This study suggests a novel strategy of engineering supramolecular binding sites into MOFs to overcome the trade-off for this separation.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202211523-sup-0001-misc_information.pdf5.5 MB | Supporting Information |
ange202211523-sup-0001-ZJU-50.cif455.1 KB | Supporting Information |
ange202211523-sup-0001-ZJU-50_C2H2.cif1.6 MB | Supporting Information |
ange202211523-sup-0001-ZJU-50_CO2.cif347.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Granada, S. B. Karra, S. M. Senkan, Ind. Eng. Chem. Res. 1987, 26, 1901–1905.
- 2C. J. Guo, D. Shen, M. Bülow, Stud. Surf. Sci. Catal. 2001, 135, 144.
10.1016/S0167-2991(01)81226-X Google Scholar
- 3J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
- 4
- 4aM. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828;
- 4bH. Wang, Y. Liu, J. Li, Adv. Mater. 2020, 32, 2002603;
- 4cP. M. Bhatt, V. Guillerm, S. J. Datta, A. Shkurenko, M. Eddaoudi, Chem 2020, 6, 1613–1633;
- 4dW.-G. Cui, T.-L. Hu, X.-H. Bu, Adv. Mater. 2020, 32, 1806445;
- 4eJ. Dong, V. Wee, S. B. Peh, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 16279–16292; Angew. Chem. 2021, 133, 16415–16428;
- 4fZ. Chen, K. O. Kirlikovali, P. Li, O. K. Farha, Acc. Chem. Res. 2022, 55, 579–591;
- 4gP.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, Science 2017, 356, 1193–1196.
- 5
- 5aS. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Toebbens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert, S. Kaskel, Nature 2016, 532, 348–352;
- 5bZ. Shi, Y. Tao, J. Wu, C. Zhang, H. He, L. Long, Y. Lee, T. Li, Y.-B. Zhang, J. Am. Chem. Soc. 2020, 142, 2750–2754;
- 5cR. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238–241;
- 5dX.-W. Zhang, D.-D. Zhou, J.-P. Zhang, Chem 2021, 7, 1006–1019;
- 5eE. J. Kim, R. L. Siegelman, H. Z. H. Jiang, A. C. Forse, J.-H. Lee, J. D. Martell, P. J. Milner, J. M. Falkowski, J. B. Neaton, J. A. Reimer, S. C. Weston, J. R. Long, Science 2020, 369, 392–396;
- 5fH. Zeng, M. Xie, T. Wang, R.-J. Wei, X.-J. Xie, Y. Zhao, W. Lu, D. Li, Nature 2021, 595, 542–548;
- 5gB. Li, X. Cui, D. O'Nolan, H.-M. Wen, M. Jiang, R. Krishna, H. Wu, R.-B. Lin, Y.-S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M. J. Zaworotko, B. Chen, Adv. Mater. 2017, 29, 170421;
- 5hL. Yu, X. Han, H. Wang, S. Ullah, Q. Xia, W. Li, J. Li, I. da Silva, P. Manuel, S. Rudić, Y. Cheng, S. Yang, T. Thonhauser, J. Li, J. Am. Chem. Soc. 2021, 143, 19300–19305.
- 6
- 6aL. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443–446;
- 6bZ. Zhang, S. B. Peh, R. Krishna, C. Kang, K. Chai, Y. Wang, D. Shi, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 17198–17204; Angew. Chem. 2021, 133, 17335–17341;
- 6cO. T. Qazvini, R. Babarao, S. G. Telfer, Nat. Commun. 2021, 12, 197;
- 6dY. Gu, J.-J. Zheng, K. Otake, M. Shivanna, S. Sakaki, H. Yoshino, M. Ohba, S. Kawaguchi, Y. Wang, F. Li, S. Kitagawa, Angew. Chem. Int. Ed. 2021, 60, 11688–11694; Angew. Chem. 2021, 133, 11794–11800;
- 6eB. Zhu, J.-W. Cao, S. Mukherjee, T. Pham, T. Zhang, T. Wang, X. Jiang, K. A. Forrest, M. J. Zaworotko, K.-J. Chen, J. Am. Chem. Soc. 2021, 143, 1485–1492;
- 6fX.-W. Gu, J.-X. Wang, E. Wu, H. Wu, W. Zhou, G. Qian, B. Chen, B. Li, J. Am. Chem. Soc. 2022, 144, 2614–2623;
- 6gH. Yang, Y. Wang, R. Krishna, X. Jia, Y. Wang, A. N. Hong, C. Dang, H. E. Castillo, X. Bu, P. Feng, J. Am. Chem. Soc. 2020, 142, 2222–2227.
- 7J. Pei, K. Shao, J.-X. Wang, H.-M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, G. Qian, Adv. Mater. 2020, 32, 1908275.
- 8Y.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10971–10975; Angew. Chem. 2018, 130, 11137–11141.
- 9L. Yang, L. Yan, Y. Wang, Z. Liu, J. He, Q. Fu, D. Liu, X. Gu, P. Dai, L. Li, X. Zhao, Angew. Chem. Int. Ed. 2021, 60, 4570–4574; Angew. Chem. 2021, 133, 4620–4624.
- 10J. Gao, X. Qian, R.-B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 2020, 59, 4396–4400; Angew. Chem. 2020, 132, 4426–4430.
- 11L. Zhang, K. Jiang, L. Yang, L. Li, E. Hu, L. Yang, K. Shao, H. Xing, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 15995–16002; Angew. Chem. 2021, 133, 16131–16138.
- 12L. Wang, W. Sun, Y. Zhang, N. Xu, R. Krishna, J. Hu, Y. Jiang, Y. He, H. Xing, Angew. Chem. Int. Ed. 2021, 60, 22865–22870; Angew. Chem. 2021, 133, 23047–23052.
- 13N. Kumar, S. Mukherjee, N. C. Harvey-Reid, A. A. Bezrukov, K. Tan, V. Martins, M. Vandichel, T. Pham, L. M. van Wyk, K. Oyekan, A. Kumar, K. A. Forrest, K. M. Patil, L. J. Barbour, B. Space, Y. Huang, P. E. Kruger, M. J. Zaworotko, Chem 2021, 7, 3085–3098.
- 14Z. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288; Angew. Chem. 2021, 133, 5343–5348.
- 15J. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae, E. Lee, Angew. Chem. Int. Ed. 2018, 57, 7869–7873; Angew. Chem. 2018, 130, 7995–7999.
- 16
- 16aK.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry IV, M. J. Zaworotko, Chem 2016, 1, 753–765;
- 16bW. Gong, H. Cui, Y. Xie, Y. Li, X. Tang, Y. Liu, Y. Cui, B. Chen, J. Am. Chem. Soc. 2021, 143, 14869–14876.
- 17
- 17aH. Zeng, M. Xie, Y.-L. Huang, Y. Zhao, X.-J. Xie, J.-P. Bai, M.-Y. Wan, R. Krishna, W. Lu, D. Li, Angew. Chem. Int. Ed. 2019, 58, 8515–8519; Angew. Chem. 2019, 131, 8603–8607;
- 17bM. Shivanna, K.-I. Otake, B.-Q. Song, L. M. Wyk, Q.-Y. Yang, N. Kumar, W. K. Feldmann, T. Pham, S. Suepaul, B. Space, L. J. Barbour, S. Kitagawa, M. J. Zaworotko, Angew. Chem. Int. Ed. 2021, 60, 20383–20390; Angew. Chem. 2021, 133, 20546–20553.
- 18Z. Di, C. Liu, J. Pang, C. Chen, F. Hu, D. Yuan, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 10828–10832; Angew. Chem. 2021, 133, 10923–10927.
- 19
- 19aS. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B. Chen, J. Am. Chem. Soc. 2009, 131, 12415–12419;
- 19bM. Fischer, F. Hoffmann, M. Froba, ChemPhysChem 2010, 11, 2220–2229.
- 20Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136.
- 21Y.-Y. Xue, X.-Y. Bai, J. Zhang, Y. Wang, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Q.-G. Zhai, Angew. Chem. Int. Ed. 2021, 60, 10122–10128; Angew. Chem. 2021, 133, 10210–10216.
- 22H. Li, C. Liu, C. Chen, Z. Di, D. Yuan, J. Pang, W. Wei, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 7547–7552; Angew. Chem. 2021, 133, 7625–7630.
- 23F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T.-L. Hu, M. O'Keeffe, L. Wang, M. Luo, R.-B. Lin, B. Chen, J. Am. Chem. Soc. 2016, 138, 5678–5684.
- 24Y. Ye, S. Xian, H. Cui, K. Tan, L. Gong, B. Liang, T. Pham, H. Pandey, R. Krishna, P. C. Lan, K. A. Forrest, B. Space, T. Thonhauser, J. Li, S. Ma, J. Am. Chem. Soc. 2022, 144, 1681–1689.
- 25Y.-P. Li, Y. Wang, Y.-Y. Xue, H.-P. Li, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 13590–13595; Angew. Chem. 2019, 131, 13724–13729.
- 26
- 26aW. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737;
- 26bS. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem. Int. Ed. 2010, 49, 4615–4618; Angew. Chem. 2010, 122, 4719–4722;
- 26cA. N. Hong, E. Kusumoputro, Y. Wang, H. Yang, Y. Chen, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2022, 61, e202116064; Angew. Chem. 2022, 134, e202116064.
- 27
- 27aY. He, B. Li, M. O'Keeffe, B. Chen, Chem. Soc. Rev. 2014, 43, 5618–5656;
- 27bS. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, H.-C. Zhou, J. Am. Chem. Soc. 2008, 130, 1012–1016;
- 27cD. Yuan, D. Zhao, D. Sun, H.-C. Zhou, Angew. Chem. Int. Ed. 2010, 49, 5357–5361; Angew. Chem. 2010, 122, 5485–5489;
- 27dY. He, R. Krishna, B. Chen, Energy Environ. Sci. 2012, 5, 9107–9120;
- 27eB. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4745–4749; Angew. Chem. 2005, 117, 4823–4827;
- 27fX. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2009, 131, 2159–2171;
- 27gT. D. Duong, S. A. Sapchenko, I. da Silva, H. G. W. Godfrey, Y. Cheng, L. L. Daemen, P. Manuel, A. J. Ramirez-Cuesta, S. Yang, M. Schröder, J. Am. Chem. Soc. 2018, 140, 16006–16009;
- 27hJ. D. Humby, O. Benson, G. L. Smith, S. P. Argent, I. da Silva, Y. Cheng, S. Rudic, P. Manuel, M. D. Frogley, G. Cinque, L. K. Saunders, I. J. Vitorica-Yrezabal, G. F. S. Whitehead, T. L. Easun, W. Lewis, A. J. Blake, A. J. Ramirez-Cuesta, S. Yang, M. Schröder, Chem. Sci. 2019, 10, 1098–1106.
- 28
- 28aF. Moreau, I. da Silva, N. H. A. Smail, T. L. Easun, M. Savage, H. G. W. Godfrey, S. F. Parker, P. Manuel, S. Yang, M. Schröder, Nat. Commun. 2017, 8, 14085;
- 28bJ. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan, M. Hong, Nat. Commun. 2015, 6, 7575.
- 29
- 29aJ. F. Eubank, H. Mouttaki, A. J. Cairns, Y. Belmabkhout, L. Wojtas, R. Luebke, M. Alkordi, M. Eddaoudi, J. Am. Chem. Soc. 2011, 133, 14204–14207;
- 29bC. Tan, S. Yang, N. R. Champness, X. Lin, A. J. Blake, W. Lewis, M. Schröder, Chem. Commun. 2011, 47, 4487–4489;
- 29cI. Spanopoulos, C. Tsangarakis, E. Klontzas, E. Tylianakis, G. Froudakis, K. Adil, Y. Belmabkhout, M. Eddaoudi, P. N. Trikalitis, J. Am. Chem. Soc. 2016, 138, 1568–1574;
- 29dF. Moreau, D. I. Kolokolov, A. G. Stepanov, T. L. Easun, A. Dailly, W. Lewis, A. J. Blake, H. Nowell, M. J. Lennox, E. Besley, S. Yang, M. Schröder, Proc. Natl. Acad. Sci. USA 2017, 114, 3056–3061.
- 30
- 30aJ.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena, H.-C. Zhou, Nat. Commun. 2013, 4, 1538;
- 30bL.-H. Xie, X.-M. Liu, T. He, J.-R. Li, Chem 2018, 4, 1911–1927;
- 30cT. He, X.-J. Kong, Z.-X. Bian, Y.-Z. Zhang, G.-R. Si, L.-H. Xie, X.-Q. Wu, H. Huang, Z. Chang, X.-H. Bu, M. J. Zaworotko, Z.-R. Nie, J.-R. Li, Nat. Mater. 2022, 21, 689–695.
- 31Deposition Numbers 2131205 (for ZJU-50), 2131037 (for C2H2@ZJU-50a) and 2141984 (for CO2@ZJU-50a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 32C. Y. Lee, Y.-S. Bae, N. C. Jeong, O. K. Farha, A. A. Sarjeant, C. L. Stern, P. Nickias, R. Q. Snurr, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2011, 133, 5228–5231.
- 33
- 33aC. R. Reid, K. M. Thomas, Langmuir 1999, 15, 3206–3218;
- 33bL. Li, J. G. Bell, S. Tang, X. Lv, C. Wang, Y. Xing, X. Zhao, K. M. Thomas, Chem. Mater. 2014, 26, 4679–4695;
- 33cX. Zhao, J. G. Bell, S.-F. Tang, L. Lia, K. M. Thomas, J. Mater. Chem. A 2016, 4, 1353–1365.
- 34
- 34aF. A. Son, B. C. Bukowski, T. Islamoglu, R. Q. Snurr, O. K. Farha, Chem. Mater. 2021, 33, 9093–9100;
- 34bB. C. Bukowski, F. A. Son, Y. Chen, L. Robison, T. Islamoglu, R. Q. Snurr, O. K. Farha, Chem. Mater. 2022, 34, 4134–4141.
- 35
- 35aJ. Pei, H.-M. Wen, X.-W. Gu, Q.-L. Qian, Y. Yang, Y. Cui, B. Li, B. Chen, G. Qian, Angew. Chem. Int. Ed. 2021, 60, 25068–25074; Angew. Chem. 2021, 133, 25272–25278;
- 35bS. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang, M. Schröder, Nat. Chem. 2015, 7, 121–129;
- 35cX. Zhang, R.-B. Lin, H. Wu, Y. Huang, Y. Ye, J. Duan, W. Zhou, J.-R. Li, B. Chen, Chem. Eng. J. 2022, 431, 134184.
- 36
- 36aH. Wu, J. M. Simmons, G. Srinivas, W. Zhou, T. Yildirim, J. Phys. Chem. Lett. 2010, 1, 1946–1951;
- 36bL. Grajciar, A. D. Wiersum, P. L. Llewellyn, J. S. Chang, P. Nachtigall, J. Phys. Chem. C 2011, 115, 17925–17933.
- 37
- 37aK. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2003;
10.1002/9783527619191 Google Scholar
- 37bN. P. Revsbech, J. Sørensen, Denitrification in Soil and Sediment, Plenum Press, New York, 1990.
10.1007/978-1-4757-9969-9 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.