Copper-Catalyzed Boroaminomethylation of Olefins to γ-Boryl Amines with CO as C1 Source
Dr. Fu-Peng Wu
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorHui-Qing Geng
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiao-Feng Wu
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
Search for more papers by this authorDr. Fu-Peng Wu
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorHui-Qing Geng
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiao-Feng Wu
Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
Search for more papers by this authorAbstract
Boroaminomethylation of olefins is an efficient process to convert hydrocarbons directly into boron-, nitrogen-containing molecules. Such chemicals are a good handle for obtaining more complexed amine derivatives through the various transformations of organoboron. However, using simple and easily available CO as the C1 feedstock to achieve boroaminomethylation is still elusive. Here we report a copper-catalyzed boroaminomethylation of olefins with CO as the C1 source via the mechanism of a carbene insertion into the N−H bond. This method affords valuable γ-boryl amines from four inexpensive readily chemicals. The wide synthetic transformations of the γ-boryl amines demonstrates their utility. Notably, 13C labeling studies revealed that the −CH2-building block was derived from one molecule of CO.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202211455-sup-0001-misc_information.pdf16.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. C. Nugent, Chiral Amine Synthesis, Methods, developments and applications, Wiley-VCH, Weinheim, 2010.
10.1002/9783527629541 Google Scholar
- 2L. A. Hobson, W. A. Nugent, S. R. Anderson, S. S. Deshmukh, J. J. Haley, P. Liu, N. A. Magnus, P. Sheeran, J. P. Sherbine, B. R. P. Stone, J. Zhu, Org. Process Res. Dev. 2007, 11, 985–995.
- 3T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753–819.
- 4C. Defieber, M. A. Ariger, P. Moriel, E. M. Carreira, Angew. Chem. Int. Ed. 2007, 46, 3139–3143; Angew. Chem. 2007, 119, 3200–3204.
- 5A. Trowbridge, S. M. Walton, M. J. Gaunt, Chem. Rev. 2020, 120, 2613–2692.
- 6S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, ChemCatChem 2011, 3, 1853–1864.
- 7J. Barrios-Rivera, Y. Xu, M. Wills, V. K. Vyas, Org. Chem. Front. 2020, 7, 3312–3342.
- 8A. Mukherjee, D. Srimani, S. Chakraborty, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2015, 137, 8888–8891.
- 9R. Reguillo, M. Grellier, N. Vautravers, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2010, 132, 7854–7855.
- 10P. Kalck, M. Urrutigoity, Chem. Rev. 2018, 118, 3833–3861.
- 11S. Oda, B. Sam, M. J. Krische, Angew. Chem. Int. Ed. 2015, 54, 8525–8528; Angew. Chem. 2015, 127, 8645–8648.
- 12J. Che, L. Niu, S. Jia, D. Xing, W. Hu, Nat. Commun. 2020, 11, 1511.
- 13S. Weber, D. Zobernig, B. Stoger, L. F. Veiros, K. Kirchner, Angew. Chem. Int. Ed. 2021, 60, 24488–24492; Angew. Chem. 2021, 133, 24693–24697.
- 14A. D. Ibrahim, S. W. Entsminger, A. R. Fout, ACS Catal. 2017, 7, 3730–3734.
- 15X. Qiu, L. Xu, S. Wang, Y. Dai, Y. Feng, C. Gong, C. Tao, Chem. Commun. 2021, 57, 3279–3282.
- 16M. Wang, Z. Shi, Chem. Rev. 2020, 120, 7348–7398.
- 17S. K. Bose, L. Mao, L. Kuehn, U. Radius, J. Nekvinda, W. L. Santos, S. A. Westcott, P. G. Steel, T. B. Marder, Chem. Rev. 2021, 121, 13238–13341.
- 18J.-B. Peng, F.-P. Wu, X.-F. Wu, Chem. Rev. 2019, 119, 2090–2127.
- 19J.-B. Peng, F.-P. Wu, C. Xu, X. Qi, J. Ying, X.-F. Wu, Commun. Chem. 2018, 1, 87.
- 20M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. Int. Ed. 2004, 43, 3368–3398; Angew. Chem. 2004, 116, 3448–3479.
- 21S. Hanna, J. C. Holder, J. F. Hartwig, Angew. Chem. Int. Ed. 2019, 58, 3368–3372; Angew. Chem. 2019, 131, 3406–3410.
- 22L. Wu, I. Fleischer, R. Jackstell, M. Beller, J. Am. Chem. Soc. 2013, 135, 3989–3996.
- 23A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross, M. Beller, Science 2002, 297, 1676–1678.
- 24A. Whyte, A. Torelli, B. Mirabi, A. Zhang, M. Lautens, ACS Catal. 2020, 10, 11578–11622.
- 25W. Xue, M. Oestreich, ACS Cent. Sci. 2020, 6, 1070–1081.
- 26D. S. Laitar, E. Y. Tsui, J. P. Sadighi, J. Am. Chem. Soc. 2006, 128, 11036–11037.
- 27F.-P. Wu, Y. Yuan, C. Schunemann, P. C. J. Kamer, X.-F. Wu, Angew. Chem. Int. Ed. 2020, 59, 10451–10455; Angew. Chem. 2020, 132, 10537–10541.
- 28F.-P. Wu, J. Holz, Y. Yuan, X.-F. Wu, CCS Chem. 2021, 3, 2643–2654.
- 29X. Wang, Y. Wang, W. Huang, C. Xia, L. Wu, ACS Catal. 2021, 11, 1–18.
- 30J. R. Smith, B. S. L. Collins, M. J. Hesse, M. A. Graham, E. L. Myers, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 9148–9151.
- 31H. Iwamoto, T. Imamoto, H. Ito, Nat. Commun. 2018, 9, 2290.
- 32Y. Yuan, F.-P. Wu, X.-F. Wu, Chem. Sci. 2021, 12, 13777–13781.
- 33F.-P. Wu, X. Luo, U. Radius, T. B. Marder, X.-F. Wu, J. Am. Chem. Soc. 2020, 142, 14074–14079.
- 34F.-P. Wu, Y. Yang, D. P. Fuentes, X.-F. Wu, Chem 2022, 8, 1982–1992.
- 35M.-L. Li, J.-H. Yu, Y.-H. Li, S.-F. Zhu, Q.-L. Zhou, Science 2019, 366, 990–994.
- 36D. Gillingham, N. Fei, Chem. Soc. Rev. 2013, 42, 4918–31.
- 37D. Nam, A. Tinoco, Z. Shen, R. D. Adukure, G. Sreenilayam, S. D. Khare, R. Fasan, J. Am. Chem. Soc. 2022, 144, 2590–2602.
- 38M.-L. Li, J.-B. Pan, Q.-L. Zhou, Nat. Catal. 2022, 5, 571–577.
- 39B. M. Trost, C.-I. Hung, T. Saget, E. Gnanamani, Nat. Catal. 2018, 1, 523–530.
- 40S. Sueki, Y. Kuninobu, Org. Lett. 2013, 15, 1544–1547.
- 41D. S. Laitar, P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127, 17196–17197.
- 42D. S. Laitar, E. Y. Tsui, J. P. Sadighi, Organometallics 2006, 25, 2405–2408.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.