Green Carbon Science: Keeping the Pace in Practice
Peng Gao
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorLiangshu Zhong
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Buxing Han
Shanghai Key Laboratory of Green Chemistry & Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062 China
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Institute of Eco-Chongming, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Mingyuan He
Shanghai Key Laboratory of Green Chemistry & Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062 China
Research Institute of Petrochem Processing, SINOPEC, Beijing, 100083 China
Institute of Eco-Chongming, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Yuhan Sun
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203 China
Shanghai Low Carbon Technology Innovation Platform, Shanghai, 210620 China
Search for more papers by this authorPeng Gao
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorLiangshu Zhong
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Buxing Han
Shanghai Key Laboratory of Green Chemistry & Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062 China
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Institute of Eco-Chongming, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Mingyuan He
Shanghai Key Laboratory of Green Chemistry & Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062 China
Research Institute of Petrochem Processing, SINOPEC, Beijing, 100083 China
Institute of Eco-Chongming, Shanghai, 202162 China
Search for more papers by this authorCorresponding Author
Yuhan Sun
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203 China
Shanghai Low Carbon Technology Innovation Platform, Shanghai, 210620 China
Search for more papers by this authorAbstract
The concept of green carbon science is to promote the goal of achieving carbon neutrality, the importance and urgency of which have been well-recognized and received worldwide attention. Carbon neutrality has become the focus of research work in many fields, and correspondingly, a growing number of papers and publications have been published over the last few years. However, since carbon neutralization is a real problem that urgently requires technical solutions, the transition from fundamental research to practical applications must be accelerated. A number of research teams are bold in putting things into practice and blazing new trails. This Review summarizes the recent technological developments within the framework of green carbon science, focusing on conducted pilot tests, industrial demonstrations, and commercial applications beyond the laboratory stage.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1
- 1aM. Y. He, Y. H. Sun, B. X. Han, Angew. Chem. Int. Ed. 2022, 61, e2021128352; Angew. Chem. 2022, 134, e2021128352;
- 1bM. Y. He, Y. H. Sun, B. X. Han, Angew. Chem. Int. Ed. 2013, 52, 9620–9633; Angew. Chem. 2013, 125, 9798–9812.
- 2International Energy Agency, “World Energy Outlook 2021”, can be found under https://www.iea.org/reports/world-energy-outlook-2021, 2021.
- 3International Energy Agency, “Net Zero by 2050 – A Roadmap for the Global Energy Sector”, can be found under https://www.iea.org/reports/net-zero-by-2050, 2021.
- 4International Energy Agency, “Global Hydrogen Review 2021”, can be found under https://www.iea.org/reports/global-hydrogen-review-2021, 2021.
- 5T. Stein, “Carbon dioxide now more than 50 % higher than pre-industrial levels”, can be found under https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels, 2022.
- 6
- 6aA. Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 2007, 107, 1692–1744;
- 6bF. Jiao, J. J. Li, X. L. Pan, J. P. Xiao, H. B. Li, H. Ma, M. M. Wei, Y. Pan, Z. Y. Zhou, M. R. Li, S. Miao, J. Li, Y. F. Zhu, D. Xiao, T. He, J. H. Yang, F. Qi, Q. Fu, X. H. Bao, Science 2016, 351, 1065–1068.
- 7
- 7aT. J. Lin, F. Yu, Y. L. An, T. T. Qin, L. S. Li, K. Gong, L. S. Zhong, Y. H. Sun, Acc. Chem. Res. 2021, 54, 1961–1971;
- 7bH. Wang, Z. W. Wang, S. Wang, C. G. Yang, S. G. Li, P. Gao, Y. H. Sun, Chem. Commun. 2021, 57, 13522–13525.
- 8H. M. Torres Galvis, K. P. de Jong, ACS Catal. 2013, 3, 2130–2149.
- 9
- 9aX. L. Yang, X. Su, D. Chen, T. Zhang, Y. Q. Huang, Chin. J. Catal. 2020, 41, 561–573;
- 9bH. Wang, P. Gao, S. G. Li, T. Wang, C. G. Yang, J. Li, T. J. Lin, L. S. Zhong, Y. H. Sun, Chem Catal. 2022, 2, 779–796.
- 10
- 10aH. T. Luk, C. Mondelli, D. C. Ferre, J. A. Stewart, J. Perez-Ramirez, Chem. Soc. Rev. 2017, 46, 1358–1426;
- 10bM. Ao, G. H. Pham, J. Sunarso, M. O. Tade, S. M. Liu, ACS Catal. 2018, 8, 7025–7050.
- 11Q. Wu, Pet. Refin. Eng. 2022, 52, 1–10.
- 12C. D. Chang, W. H. Lang, US4025576A, 1977.
- 13I. Yarulina, A. D. Chowdhury, F. Meirer, B. M. Weckhuysen, J. Gascon, Nat. Catal. 2018, 1, 398–411.
- 14F. J. Keil, Micropor. Mesopor. Mat. 1999, 29, 49–66.
- 15P. Tian, Y. X. Wei, M. Ye, Z. M. Liu, ACS Catal. 2015, 5, 1922–1938.
- 16M. Yang, D. Fan, Y. X. Wei, P. Tian, Z. M. Liu, Adv. Mater. 2019, 31, 1902181.
- 17M. Ye, P. Tian, Z. M. Liu, Engineering 2021, 7, 17–21.
- 18K. Cheng, B. Gu, X. L. Liu, J. C. Kang, Q. H. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 4725–4728; Angew. Chem. 2016, 128, 4803–4806.
- 19J. J. Su, H. B. Zhou, S. Liu, C. M. Wang, W. Q. Jiao, Y. D. Wang, C. Liu, Y. C. Ye, L. Zhang, Y. Zhao, H. X. Liu, D. Wang, W. M. Yang, Z. K. Xie, M. Y. He, Nat. Commun. 2019, 10, 1297.
- 20H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, Science 2012, 335, 835–838.
- 21H. M. Torres Galvis, A. C. J. Koeken, J. H. Bitter, T. Davidian, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, J. Catal. 2013, 303, 22–30.
- 22L. S. Zhong, F. Yu, Y. L. An, Y. H. Zhao, Y. H. Sun, Z. J. Li, T. J. Lin, Y. J. Lin, X. Z. Qi, Y. Y. Dai, L. Gu, J. S. Hu, S. F. Jin, Q. Shen, H. Wang, Nature 2016, 538, 84–87.
- 23Z. J. Li, L. S. Zhong, F. Yu, Y. L. An, Y. Y. Dai, Y. Z. Yang, T. J. Lin, S. G. Li, H. Wang, P. Gao, Y. H. Sun, M. Y. He, ACS Catal. 2017, 7, 3622–3631.
- 24Z. J. Li, T. J. Lin, F. Yu, Y. L. An, Y. Y. Dai, S. G. Li, L. S. Zhong, H. Wang, P. Gao, Y. H. Sun, M. Y. He, ACS Catal. 2017, 7, 8023–8032.
- 25Y. Y. Dai, Y. H. Zhao, T. J. Lin, S. G. Li, F. Yu, Y. L. An, X. X. Wang, K. Xiao, F. F. Sun, Z. Jiang, Y. W. Lu, H. Wang, L. S. Zhong, Y. H. Sun, ACS Catal. 2019, 9, 798–809.
- 26Q. L. Meng, J. Yan, R. Z. Wu, H. Z. Liu, Y. Sun, N. N. Wu, J. F. Xiang, L. R. Zheng, J. Zhang, B. X. Han, Nat. Commun. 2021, 12, 4534.
- 27N. Ji, T. Zhang, M. Y. Zheng, A. Q. Wang, H. Wang, X. D. Wang, J. G. G. Chen, Angew. Chem. Int. Ed. 2008, 47, 8510–8513; Angew. Chem. 2008, 120, 8638–8641.
- 28Z. T. Zhao, J. Y. Jiang, M. Y. Zheng, F. Wang, Chem. Eng. J. 2021, 411, 128516.
- 29H. Luo, L. W. Bao, L. Z. Kong, Y. H. Sun, AIChE J. 2018, 64, 2124–2134.
- 30H. Luo, Y. F. Zhang, H. Zhu, X. P. Zhao, L. J. Zhu, W. Liu, M. Y. Sun, G. Miao, S. G. Li, L. Z. Kong, Green Chem. 2021, 23, 821–827.
- 31
- 31aL. Shi, G. H. Yang, K. Tao, Y. Yoneyama, Y. S. Tan, N. Tsubaki, Acc. Chem. Res. 2013, 46, 1838–1847;
- 31bA. Abdulrasheed, A. A. Jalil, Y. Gambo, M. Ibrahim, H. U. Hambali, M. Y. S. Hamid, Renew. Sust. Energ. Rev. 2019, 108, 175–193.
- 32
- 32aD. Pakhare, J. Spivey, Chem. Soc. Rev. 2014, 43, 7813–7837;
- 32bY. Fu, W. B. Kong, B. R. Pan, C. K. Yuan, S. G. Li, H. Zhu, J. Zhang, J. Environ. Chem. Eng. 2021, 9, 105790.
- 33M. J. Li, Z. X. Sun, Y. H. Hu, J. Mater. Chem. A 2021, 9, 12495–12520.
- 34
- 34aS. G. Liu, L. X. Guan, J. P. Li, N. Zhao, W. Wei, Y. H. Sun, Fuel 2008, 87, 2477–2481;
- 34bN. N. Sun, X. Wen, F. Wang, W. Wei, Y. H. Sun, Energy Environ. Sci. 2010, 3, 366–369;
- 34cN. N. Sun, X. Wen, F. Wang, W. C. Peng, N. Zhao, F. K. Xiao, W. Wei, Y. H. Sun, J. Kang, Appl. Surf. Sci. 2011, 257, 9169–9176.
- 35
- 35aC. Z. Wang, N. N. Sun, M. Kang, X. Wen, N. Zhao, F. K. Xiao, W. Wei, T. J. Zhao, Y. H. Sun, Catal. Sci. Technol. 2013, 3, 2435–2443;
- 35bC. Z. Wang, N. N. Sun, N. Zhao, W. Wei, J. Zhang, T. J. Zhao, Y. H. Sun, C. G. Sun, H. Liu, C. E. Snape, ChemCatChem 2014, 6, 640–648;
- 35cC. Z. Wang, N. N. Sun, N. Zhao, W. Wei, Y. H. Sun, C. Sun, H. Liu, C. E. Snape, Fuel 2015, 143, 527–535;
- 35dQ. J. Chen, J. Zhang, B. R. Pan, W. B. Kong, Y. Y. Chen, W. L. Zhang, Y. H. Sun, Chem. Eng. J. 2017, 320, 63–73;
- 35eQ. J. Chen, J. Zhang, Q. W. Jin, B. R. Pan, W. B. Kong, T. J. Zhao, Y. H. Sun, Catal. Today 2013, 215, 251–259.
- 36K. Yuan, J. Q. Zhong, X. Zhou, L. Xu, S. L. Bergman, K. Wu, G. Q. Xu, S. L. Bernasek, H. X. Li, W. Chen, ACS Catal. 2016, 6, 4330–4339.
- 37W. Kong, Y. Fu, L. Shi, S. G. Li, E. Vovk, X. H. Zhou, R. Si, B. R. Pan, C. K. Yuan, S. Q. Li, F. F. Cai, H. Zhu, J. Zhang, Y. Yang, Y. H. Sun, Appl. Catal. B 2021, 285, 119837.
- 38
- 38aJ. Y. Wang, Y. Fu, W. B. Kong, F. K. Jin, J. R. Bai, J. Zhang, Y. H. Sun, Appl. Catal. B 2021, 282, 119546;
- 38bS. Li, Y. Fu, W. B. Kong, B. R. Pan, C. K. Yuan, F. F. Cai, H. Zhu, J. Zhang, Y. H. Sun, Appl. Catal. B 2020, 277, 118921;
- 38cW. B. Kong, Y. Fu, J. Zhang, Y. H. Sun, Chem. Phys. Lett. 2020, 739, 137027;
- 38dW. B. Kong, Y. Fu, C. K. Guan, B. R. Pan, C. K. Yuan, S. Li, F. F. Cai, J. Zhang, Y. H. Sun, Energy Technol. 2019, 7, 1900521.
- 39J. Zhou, “Shell and Chinese partners successfully operate syngas demonstration plant based on carbon dioxide, methane ”, can be found under https://chemweek.com/document/show/Chemweek/89297/Shell-and-Chinese-partners-successfully-operate-syngas-demonstration-plant-based-on-carbon-dioxide-methane, 2017.
- 40J. F. Tremblay, Chem. Eng. News 2017, 95, 16–17.
- 41P. Saha, S. Amanullah, A. Dey, Acc. Chem. Res. 2022, 55, 134–144.
- 42T. T. Li, B. Shan, T. J. Meyer, ACS Energy Lett. 2019, 4, 629–636.
- 43S. Garg, M. R. Li, A. Z. Weber, L. Ge, L. Y. Li, V. Rudolph, G. X. Wang, T. E. Rufford, J. Mater. Chem. A 2020, 8, 1511–1544.
- 44Y. Y. Cheng, P. F. Hou, X. P. Wang, P. Kang, Acc. Chem. Res. 2022, 55, 231–240.
- 45P. F. Hou, X. P. Wang, Z. Wang, P. Kang, ACS Appl. Mater. Interfaces 2018, 10, 38024–38031.
- 46M. A. A. Aziz, A. A. Jalil, S. Triwahyono, A. Ahmad, Green Chem. 2015, 17, 2647–2663.
- 47M. Younas, L. L. Kong, M. J. K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Energy Fuel. 2016, 30, 8815–8831.
- 48C. Vogt, M. Monai, G. J. Kramer, B. M. Weckhuysen, Nat. Catal. 2019, 2, 188–197.
- 49G. A. Olah, Angew. Chem. Int. Ed. 2005, 44, 2636–2639; Angew. Chem. 2005, 117, 2692–2696.
- 50C. F. Shih, T. Zhang, J. H. Li, C. L. Bai, Joule 2018, 2, 1925–1949.
- 51
- 51aX. Jiang, X. W. Nie, X. W. Guo, C. S. Song, J. G. Chen, Chem. Rev. 2020, 120, 7984–8034;
- 51bJ. W. Zhong, X. F. Yang, Z. L. Wu, B. L. Liang, Y. Q. Huang, T. Zhang, Chem. Soc. Rev. 2020, 49, 1385–1413;
- 51cS. S. Dang, H. Y. Yang, P. Gao, H. Wang, X. P. Li, W. Wei, Y. H. Sun, Catal. Today 2019, 330, 61–75;
- 51dP. Gao, L. N. Zhang, S. G. Li, Z. X. Zhou, Y. H. Sun, ACS Cent. Sci. 2020, 6, 1657–1670.
- 52E. Lam, K. Larmier, S. Tada, P. Wolf, O. V. Safonova, C. Coperet, Chin. J. Catal. 2019, 40, 1741–1748.
- 53
- 53aP. Gao, F. Li, H. J. Zhan, N. Zhao, F. K. Xiao, W. Wei, L. S. Zhong, H. Wang, Y. H. Sun, J. Catal. 2013, 298, 51–60;
- 53bP. Gao, H. Y. Yang, L. N. Zhang, C. Zhang, L. S. Zhong, H. Wang, W. Wei, Y. H. Sun, J. CO2 Util. 2016, 16, 32–41;
- 53cP. Gao, R. Y. Xie, H. Wang, L. S. Zhong, L. Xia, Z. Z. Zhang, W. Wei, Y. H. Sun, J. CO2 Util. 2015, 11, 41–48;
- 53dS. Xiao, Y. F. Zhang, P. Gao, L. S. Zhong, X. P. Li, Z. Z. Zhang, H. Wang, W. Wei, Y. H. Sun, Catal. Today 2017, 281, 327–336;
- 53eP. Gao, F. Li, N. Zhao, H. Wang, W. Wei, Y. H. Sun, Acta. Phys. Chim. Sin. 2014, 30, 1155–1162;
- 53fP. Gao, L. S. Zhong, L. N. Zhang, H. Wang, N. Zhao, W. Wei, Y. H. Sun, Catal. Sci. Technol. 2015, 5, 4365–4377.
- 54Z. X. Zhou, P. Gao, Chin. J. Catal. 2022, 43, 2045–2056.
- 55
- 55aS. S. Dang, B. Qin, Y. Yang, H. Wang, J. Cai, Y. Han, S. G. Li, P. Gao, Y. H. Sun, Sci. Adv. 2020, 6, eaaz2060;
- 55bJ. Y. Wang, G. H. Zhang, J. Zhu, X. B. Zhang, F. S. Ding, A. F. Zhang, X. W. Guo, C. S. Song, ACS Catal. 2021, 11, 1406–1423;
- 55cC. Meng, G. F. Zhao, X. R. Shi, P. J. Chen, Y. Liu, Y. Lu, Sci. Adv. 2021, 7, eabi6012.
- 56J. T. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. H. Zhang, W. Wen, S. S. Yu, Y. Pan, J. Z. Yang, H. Ma, F. Qi, Y. K. Wang, Y. P. Zheng, M. S. Chen, R. Huang, S. H. Zhang, Z. C. Zhao, J. Mao, X. Y. Meng, Q. Q. Ji, G. J. Hou, X. W. Han, X. H. Bao, Y. Wang, D. H. Deng, Nat. Catal. 2021, 4, 242–250.
- 57H. Y. Yang, C. Zhang, P. Gao, H. Wang, X. P. Li, L. S. Zhong, W. Wei, Y. H. Sun, Catal. Sci. Technol. 2017, 7, 4580–4598.
- 58P. Gao, S. G. Li, X. N. Bu, S. S. Dang, Z. Y. Liu, H. Wang, L. S. Zhong, M. H. Qiu, C. G. Yang, J. Cai, W. Wei, Y. H. Sun, Nat. Chem. 2017, 9, 1019–1024.
- 59
- 59aP. Gao, S. S. Dang, S. G. Li, X. N. Bu, Z. Y. Liu, M. H. Qiu, C. G. Yang, H. Wang, L. S. Zhong, Y. Han, Q. H. Liu, W. Wei, Y. H. Sun, ACS Catal. 2018, 8, 571–578;
- 59bS. S. Dang, S. G. Li, C. G. Yang, X. Q. Chen, X. P. Li, L. S. Zhong, P. Gao, Y. H. Sun, ChemSusChem 2019, 12, 3582–3591.
- 60
- 60aW. Zhou, K. Cheng, J. C. Kang, C. Zhou, V. Subramanian, Q. H. Zhang, Y. Wang, Chem. Soc. Rev. 2019, 48, 3193–3228;
- 60bZ. L. Li, Y. Z. Qu, J. J. Wang, H. L. Liu, M. R. Li, S. Miao, C. Li, Joule 2019, 3, 570–583;
- 60cJ. Wei, R. W. Yao, Y. Han, Q. J. Ge, J. Sun, Chem. Soc. Rev. 2021, 50, 10764–10805;
- 60dT. Wang, C. G. Yang, P. Gao, S. J. Zhou, S. G. Li, H. Wang, Y. H. Sun, Appl. Catal. B 2021, 286, 119929;
- 60eY. M. Ni, Z. Y. Chen, Y. Fu, Y. Liu, W. L. Zhu, Z. M. Liu, Nat. Commun. 2018, 9, 3457.
- 61
- 61aJ. Wei, Q. J. Ge, R. W. Yao, Z. Y. Wen, C. Y. Fang, L. S. Guo, H. Y. Xu, J. Sun, Nat. Commun. 2017, 8, 15174;
- 61bX. Cui, P. Gao, S. G. Li, C. G. Yang, Z. Y. Liu, H. Wang, L. S. Zhong, Y. H. Sun, ACS Catal. 2019, 9, 3866–3876;
- 61cJ. Wei, R. W. Yao, Q. J. Ge, Z. Y. Wen, X. W. Ji, C. Y. Fang, J. X. Zhang, H. Y. Xu, J. Sun, ACS Catal. 2018, 8, 9958–9967.
- 62
- 62aS. W. Wang, T. J. Wu, J. Lin, Y. S. Ji, S. R. Yan, Y. Pei, S. H. Xie, B. N. Zong, M. H. Qiao, ACS Catal. 2020, 10, 6389–6401;
- 62bM. K. Khan, P. Butolia, H. Jo, M. Irshad, D. Han, K. W. Nam, J. Kim, ACS Catal. 2020, 10, 10325–10338;
- 62cB. Yao, T. Xiao, O. A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, A. I. Kirkland, J. R. Dilworth, H. A. Al-Megren, S. M. Alshihri, P. J. Dobson, G. P. Owen, J. M. Thomas, P. P. Edwards, Nat. Commun. 2020, 11, 6395;
- 62dL. Zhang, Y. R. Dang, X. H. Zhou, P. Gao, A. Petrus van Bavel, H. Wang, S. G. Li, L. Shi, Y. Yang, E. I. Vovk, Y. H. Gao, Y. H. Sun, The Innovation 2021, 2, 100170;
- 62eZ. H. He, M. Cui, Q. L. Qian, J. J. Zhang, H. Z. Liu, B. X. Han, Proc. Natl. Acad. Sci. USA 2019, 116, 12654–12659;
- 62fM. Cui, Q. L. Qian, J. J. Zhang, Y. Wang, B. B. A. Bediako, H. Z. Liu, B. X. Han, Chem 2021, 7, 726–737.
- 63L. Zhang, Z. B. Han, X. Y. Zhao, Z. Wang, K. L. Ding, Angew. Chem. Int. Ed. 2015, 54, 6186–6189; Angew. Chem. 2015, 127, 6284–6287.
- 64A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev. 2017, 117, 9804–9838.
- 65
- 65aX. L. Meng, Z. Y. Ju, S. J. Zhang, X. D. Liang, N. von Solms, X. C. Zhang, X. P. Zhang, Green Chem. 2019, 21, 3456–3463;
- 65bJ. Y. Hu, J. Ma, H. Z. Liu, Q. L. Qian, C. Xie, B. X. Han, Green Chem. 2018, 20, 2990–2994.
- 66
- 66aW. G. Cheng, X. Chen, J. Sun, J. Q. Wang, S. J. Zhang, Catal. Today 2013, 200, 117–124;
- 66bT. Ying, X. Tan, Q. Su, W. G. Cheng, L. Dong, S. J. Zhang, Green Chem. 2019, 21, 2352–2361;
- 66cX. C. Gu, X. C. Zhang, Z. F. Yang, W. F. Shen, C. Deng, S. J. Zeng, X. P. Zhang, J. Cleaner Prod. 2021, 288, 125598;
- 66dB. H. Xu, J. Q. Wang, J. Sun, Y. Huang, J. P. Zhang, X. P. Zhang, S. J. Zhang, Green Chem. 2015, 17, 108–122.
- 67
- 67aX. Li, J. Rong, B. N. Zong, Pet. Process. Petrochem. 2021, 52, 62–71;
- 67bS. Su, B. Guo, B. N. Zong, J. Rong, J. Zhu, Pet. Process. Petrochem. 2022, 53, 105–111.
- 68CAS Headquarters, “Thousand-ton scale demonstration of solar fuel synthesis starts operation in Lanzhou, China”, can be found under https://www.eurekalert.org/news-releases/621503, 2020.
- 69J. Wang, G. N. Li, Z. L. Li, C. Z. Tang, Z. C. Feng, H. Y. An, H. L. Liu, T. F. Liu, C. Li, Sci. Adv. 2017, 3, e1701290.
- 70M. Peacock, J. Paterson, L. Reed, S. Davies, S. Carter, A. Coe, J. Clarkson, Top. Catal. 2020, 63, 328–339.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.