Lithium Enolate with a Lithium-Alkyne Interaction in the Enantioselective Construction of Quaternary Carbon Centers: Concise Synthesis of (+)-Goniomitine
Yang Li
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorElena Paola
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorZongheng Wang
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorProf. Dr. Gabriel Menard
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Armen Zakarian
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Center for Integrative Biology, Faculty of Sciences, Geroscience Center for Brain Health and Metabolism, Universidad Mayor, Santiago, Chile
Search for more papers by this authorYang Li
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorElena Paola
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorZongheng Wang
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorProf. Dr. Gabriel Menard
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Armen Zakarian
Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
Center for Integrative Biology, Faculty of Sciences, Geroscience Center for Brain Health and Metabolism, Universidad Mayor, Santiago, Chile
Search for more papers by this authorAbstract
We report a method for direct enantioselective alkylation of 3-alkynoic and 2,3-alkendioic acids that form quaternary stereogenic centers, and application of this method to the total enantioselective synthesis of a complex alkaloid (+)-goniomitine. The methods were effective in the alkylation of both 3-alkynoic acids, 2,3-alkendioic acids substrates with a broad range of heterocyclic and functionalized alkyl group substituents. Accompanying crystallographic studies provide mechanistic insight into the structure of well-defined chiral aggregates, highlighting cation-π interactions between lithium and alkyne groups.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202209987-sup-0001-misc_information.pdf4.2 MB | Supporting Information |
ange202209987-sup-0001-Supporting_Information_II.pdf40 MB | Supporting Information |
ange202209987-sup-0001-Supporting_Information_III.pdf25.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Büschleb, S. Dorich, S. Hanessian, D. Tao, K. B. Schenthal, L. E. Overman, Angew. Chem. Int. Ed. 2016, 55, 4156–4186; Angew. Chem. 2016, 128, 4226–4258.
- 2P. F. Hu, H. M. Chi, K. C. DeBacker, X. Gong, J. H. Keim, I. T. Hsu, S. A. Snyder, Nature 2019, 569, 703–707.
- 3C. X. Li, S. S. Ragab, G. D. Liu, W. J. Tang, Nat. Prod. Rep. 2020, 37, 276–292.
- 4W. Chen, H. B. Zhang, Sci. China Chem. 2016, 59, 1065–1078.
- 5
- 5aP. G. Cozzi, R. Hilgraf, N. Zimmermann, Eur. J. Org. Chem. 2007, 5969–5994;
- 5bJ. J. Dotson, S. Perez-Estrada, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2018, 140, 8359–8371;
- 5cJ. J. Feng, M. Holmes, M. J. Krische, Chem. Rev. 2017, 117, 12564–12580;
- 5dP. Fu, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2008, 130, 5530–5541;
- 5eH. L. Li, Y. X. Lu, Asian J. Org. Chem. 2017, 6, 1130–1145;
- 5fY. Y. Liu, S. J. Han, W. B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48, 740–751;
- 5gD. Pierrot, I. Marek, Angew. Chem. Int. Ed. 2020, 59, 36–49; Angew. Chem. 2020, 132, 36–49;
- 5hL. Süsse, B. M. Stoltz, Chem. Rev. 2021, 121, 4084–4099.
- 6B. M. Trost, C.-J. Li, Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley, New York, 2014.
10.1002/9783527677894 Google Scholar
- 7
- 7aG. C. Fang, X. H. Bi, Chem. Soc. Rev. 2015, 44, 8124–8173;
- 7bD. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331–1367.
- 8A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 2794–2819; Angew. Chem. 2013, 125, 2860–2887.
- 9
- 9aT. Hashimoto, K. Sakata, K. Maruoka, Angew. Chem. Int. Ed. 2009, 48, 5014–5017; Angew. Chem. 2009, 121, 5114–5117;
- 9bT. Hashimoto, K. Sakata, F. Tamakuni, M. J. Dutton, K. Maruoka, Nat. Chem. 2013, 5, 240–244.
- 10K. Tsuchida, Y. Senda, K. Nakajima, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 9728–9732; Angew. Chem. 2016, 128, 9880–9884.
- 11A. E. Wendlandt, P. Vangal, E. N. Jacobsen, Nature 2018, 556, 447–451.
- 12J. A. Dabrowski, F. Gao, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 4778–4781.
- 13
- 13aZ.-X. Wang, B.-J. Li, J. Am. Chem. Soc. 2019, 141, 9312–9320;
- 13bS.-L. Zhang, W.-W. Zhang, B.-J. Li, J. Am. Chem. Soc. 2021, 143, 9639–9647.
- 14F.-L. Wang, C.-J. Yang, J.-R. Liu, N.-Y. Yang, X.-Y. Dong, R.-Q. Jiang, X.-Y. Chang, Z.-L. Li, G.-X. Xu, D.-L. Yuan, Y.-S. Zhang, Q.-S. Gu, X. Hong, X.-Y. Liu, Nat. Chem. 2022, 14, 949–957.
- 15
- 15aA. K. Mourad, J. Leutzow, C. Czekelius, Angew. Chem. Int. Ed. 2012, 51, 11149–11152; Angew. Chem. 2012, 124, 11311–11314;
- 15bA. Shemet, E. M. Carreira, Org. Lett. 2017, 19, 5529–5532;
- 15cY.-C. Zhang, B.-W. Zhang, R.-L. Geng, J. Song, Org. Lett. 2018, 20, 7907–7911;
- 15dJ. Wang, F. He, X. Yang, Nat. Commun. 2021, 12, 6700.
- 16
- 16aJ. Bang, C. Oh, E. Lee, H. Jeong, J. Lee, J. Y. Ryu, J. Kim, C.-M. Yu, Org. Lett. 2018, 20, 1521–1525;
- 16bZ.-C. Chen, P. Chen, Z. Chen, Q. Ouyang, H.-P. Liang, W. Du, Y.-C. Chen, Org. Lett. 2018, 20, 6279–6283;
- 16cI. Pérez, F. Yuste, R. Sánchez-Obregón, R. A. Toscano, J. Aleman, L. Marzo, A. M. Martin Castro, I. Alonso, J. L. Garcia Ruano, Eur. J. Org. Chem. 2015, 3314–3319;
- 16dT. B. Poulsen, L. Bernardi, J. Aleman, J. Overgaard, K. A. Joergensen, J. Am. Chem. Soc. 2007, 129, 441–449;
- 16eD. Wang, L. Zhang, S. Luo, Org. Lett. 2017, 19, 4924–4927;
- 16fY. Wang, A. Noble, E. L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2016, 55, 4270–4274; Angew. Chem. 2016, 128, 4342–4346.
- 17
- 17aJ. Matsuo, K. Koga, Chem. Pharm. Bull. 1997, 45, 2122–2124;
- 17bD. Sato, H. Kawasaki, K. Koga, Chem. Pharm. Bull. 1997, 45, 1399–1402.
- 18
- 18aC. E. Stivala, A. Zakarian, J. Am. Chem. Soc. 2011, 133, 11936–11939;
- 18bY. Ma, C. E. Stivala, A. M. Wright, T. Hayton, J. Liang, I. Keresztes, E. Lobkovsky, D. B. Collum, A. Zakarian, J. Am. Chem. Soc. 2013, 135, 16853–16864;
- 18cP. Lu, J. J. Jackson, J. A. Eickhoff, A. Zakarian, J. Am. Chem. Soc. 2015, 137, 656–659;
- 18dY. Ma, K. A. Mack, J. Liang, I. Keresztes, D. B. Collum, A. Zakarian, Angew. Chem. Int. Ed. 2016, 55, 10093–10097; Angew. Chem. 2016, 128, 10247–10251;
- 18eK. Yu, P. Lu, J. J. Jackson, T. A. D. Nguyen, J. Alvarado, C. E. Stivala, Y. Ma, K. A. Mack, T. W. Hayton, D. B. Collum, A. Zakarian, J. Am. Chem. Soc. 2017, 139, 527–533;
- 18fJ. J. Gladfelder, S. Ghosh, M. Podunavac, A. W. Cook, Y. Ma, R. A. Woltornist, I. Keresztes, T. W. Hayton, D. B. Collum, A. Zakarian, J. Am. Chem. Soc. 2019, 141, 15024–15028;
- 18gK. Yu, B. Miao, W. Q. Wang, A. Zakarian, Org. Lett. 2019, 21, 1930–1934.
- 19
- 19aJ. J. Jackson, H. Kobayashi, S. D. Steffens, A. Zakarian, Angew. Chem. Int. Ed. 2015, 54, 9971–9975; Angew. Chem. 2015, 127, 10109–10113;
- 19bJ. J. Lacharity, J. Fournier, P. Lu, A. K. Mailyan, A. T. Herrmann, A. Zakarian, J. Am. Chem. Soc. 2017, 139, 13272–13275;
- 19cW. Zhang, Z. Zhang, J.-C. Tang, J.-T. Che, H.-Y. Zhang, J.-H. Chen, Z. Yang, J. Am. Chem. Soc. 2020, 142, 19487–19492.
- 20H. J. Reich, Chem. Rev. 2013, 113, 7130–7178.
- 21
- 21aH. J. Reich, J. E. Holladay, T. G. Walker, J. L. Thompson, J. Am. Chem. Soc. 1999, 121, 9769–9780;
- 21bH. J. Reich, J. L. Thompsono, J. Am. Chem. Soc. 2000, 122, 783–786.
- 22W. Wang, B. Xu, G. B. Hammond, Org. Lett. 2008, 10, 3713–3716.
- 23I. Scheipers, C. Mück-Lichtenfeld, A. Studer, Angew. Chem. Int. Ed. 2019, 58, 6545–6548; Angew. Chem. 2019, 131, 6616–6620.
- 24S. Castellano, H. D. Fiji, S. S. Kinderman, M. Watanabe, P. de Leon, F. Tamanoi, O. Kwon, J. Am. Chem. Soc. 2007, 129, 5843–5845.
- 25Deposition number 2202471 for [Li4((R)-1TA)(PhCCC(Me)(CO2))(THF)4] (1 a-Li) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 26B. Goldfuss, P. V. R. Schleyer, F. Hampel, J. Am. Chem. Soc. 1997, 119, 1072–1080.
- 27
- 27aM. M. Szczéśniak, H. Ratajczak, Chem. Phys. Lett. 1980, 74, 243–247;
- 27bR. Gareyev, A. Streitwieser, J. Org. Chem. 1996, 61, 1742–1747;
- 27cS. S. C. Ammal, P. Venuvanalingam, J. Chem. Phys. 1998, 109, 9820–9830;
- 27dA. Thompson, E. G. Corley, M. F. Huntington, E. J. Grabowski, J. F. Remenar, D. B. Collum, J. Am. Chem. Soc. 1998, 120, 2028–2038;
- 27eM. Aarabi, S. Gholami, S. J. Grabowski, Molecules 2021, 26, 6939.
- 28
- 28aL. Randriambola, J. C. Quirion, C. Kanfan, H. P. Husson, Tetrahedron Lett. 1987, 28, 2123–2126.
- 29Z. R. Xu, Q. Wang, J. P. Zhu, Chem. Soc. Rev. 2018, 47, 7882–7898.
- 30
- 30aH. Y. Bin, K. Wang, D. Yang, X. H. Yang, J. H. Xie, Q. L. Zhou, Angew. Chem. Int. Ed. 2019, 58, 1174–1177; Angew. Chem. 2019, 131, 1186–1189;
- 30bG. Lewin, G. Bernadat, G. Aubert, T. Cresteil, Tetrahedron 2013, 69, 1622–1627;
- 30cH. K. Li, P. Cheng, L. Jiang, J. L. Yang, L. S. Zu, Angew. Chem. Int. Ed. 2017, 56, 2754–2757; Angew. Chem. 2017, 129, 2798–2801;
- 30dM. Mizutani, F. Inagaki, T. Nakanishi, C. Yanagihara, I. Tamai, C. Mukai, Org. Lett. 2011, 13, 1796–1799;
- 30eE. Park, C. H. Cheon, Adv. Synth. Catal. 2019, 361, 4888–4892;
- 30fB. P. Pritchett, J. Kikuchi, Y. Numajiri, B. M. Stoltz, Angew. Chem. Int. Ed. 2016, 55, 13529–13532; Angew. Chem. 2016, 128, 13727–13730;
- 30gB. P. Pritchett, B. M. Stoltz, Nat. Prod. Rep. 2018, 35, 559–574;
- 30hS. Takano, T. Sato, K. Inomata, K. Ogasawara, J. Chem. Soc. Chem. Commun. 1991, 462–464;
- 30iS. Q. Zhou, Y. X. Jia, Org. Lett. 2014, 16, 3416–3418.
- 31
- 31aF. De Simone, J. Gertsch, J. Waser, Angew. Chem. Int. Ed. 2010, 49, 5767–5770; Angew. Chem. 2010, 122, 5903–5906;
- 31bL. Jiao, E. Herdtweck, T. Bach, J. Am. Chem. Soc. 2012, 134, 14563–14572;
- 31cZ. R. Xu, Q. Wang, J. P. Zhu, Angew. Chem. Int. Ed. 2013, 52, 3272–3276; Angew. Chem. 2013, 125, 3354–3358;
- 31dO. Wagnières, Z. R. Xu, Q. Wang, J. P. Zhu, J. Am. Chem. Soc. 2014, 136, 15102–15108;
- 31eJ. K. Vellucci, C. M. Beaudry, Org. Lett. 2015, 17, 4558–4560;
- 31fM. V. Mijangos, L. D. Miranda, Org. Biomol. Chem. 2018, 16, 9409–9419;
- 31gC. L. Morales, B. L. Pagenkopf, Org. Lett. 2008, 10, 157–159.
- 32S. Sumi, K. Matsumoto, H. Tokuyama, T. Fukuyama, Org. Lett. 2003, 5, 1891–1893.
- 33
- 33aE. Curthbertson, P. O'Brien, T. D. Towers, Synthesis 2001, 0693–0695;
- 33bM. J. Frizzle, S. Caille, T. L. Marshall, K. McRae, K. Nadeau, G. Guo, S. Wu, M. J. Martinelli, G. A. Moniz, Org. Process Res. Dev. 2007, 11, 215–222.
- 34A. E. Strom, J. F. Hartwig, J. Org. Chem. 2013, 78, 8909–8914.
- 35B. P. Pritchett, E. J. Donckele, B. M. Stoltz, Angew. Chem. Int. Ed. 2017, 56, 12624–12627; Angew. Chem. 2017, 129, 12798–12801.
- 36
- 36aY. Miki, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 10830–10834; Angew. Chem. 2013, 125, 11030–11034;
- 36bS. Zhu, N. Niljianskul, S. L. Buchwald, J. Am. Chem. Soc. 2013, 135, 15746–15749.
- 37
- 37aS. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 15913–15916;
- 37bY. Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science 2015, 349, 62–66;
- 37cM. T. Pirnot, Y. M. Wang, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48–57; Angew. Chem. 2016, 128, 48–57.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.