An Unsaturated Bond Strategy to Regulate Active Centers of Metal-Free Covalent Organic Frameworks for Efficient Oxygen Reduction
Xiangyu Yan
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Bingbing Wang
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Jun Ren
School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaojing Long
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dongjiang Yang
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
Search for more papers by this authorXiangyu Yan
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Bingbing Wang
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Jun Ren
School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiaojing Long
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dongjiang Yang
State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071 P.R. China
Search for more papers by this authorAbstract
Unsaturated environment is the key to affect catalytic activity of the oxygen reduction reaction (ORR). Unveiling the effect of unsaturated sites toward ORR activity is of importance due to the vague unsaturated states. Reported here is a proof-of-concept strategy on the evaluation of unsaturated bonds (UBs) on adjacent carbon environment by precisely developing two metal-free vinyl-/azo-decorated covalent organic frameworks (Vinyl-COF and Azo-COF) as catalysts. The as-prepared UB-COFs exhibit good performance than the control Py-COF and comparable to the most reported carbon catalysts. Supported by theory calculations and in situ Raman spectra-electrochemistry, it is revealed that the UBs in organic catalysts can produce para-activation, identifying the para C=N groups as active centers. Importantly, the intrinsic UBs can induce local charge redistribution, and make the molecular skeleton possess high isosurface map distribution, with an efficient affinity for oxygen intermediates.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202209583-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Debe, Nature 2012, 486, 43–51;
- 1bX. X. Wang, M. T. Swihart, G. Wu, Nat. Catal. 2019, 2, 578–589;
- 1cF. Y. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172–2192;
- 1dK. Iwase, S. Nakanishi, M. Miyayama, K. Kamiya, ACS Appl. Energy Mater. 2020, 3, 1644–1652;
- 1eS. Royuela, E. Martínez-Periñán, M. P. Arrieta, J. I. Martínez, M. M. Ramos, F. Zamora, E. Lorenzo, J. L. Segura, Chem. Commun. 2020, 56, 1267–1270.
- 2
- 2aY.-J. Wang, N. N. Zhao, B. Z. Fang, H. Li, X. T. Bi, H. Wang, Chem. Rev. 2015, 115, 3433–3467;
- 2bJ. Zhang, H. Z. Yang, J. Y. Fang, S. Z. Zou, Nano Lett. 2010, 10, 638–644;
- 2cC. G. Hu, L. M. Dai, Angew. Chem. Int. Ed. 2016, 55, 11736–11758; Angew. Chem. 2016, 128, 11910–11933.
- 3C. C. Yan, H. B. Li, Y. F. Ye, H. H. Wu, F. Cai, R. Si, J. P. Xiao, S. Miao, S. H. Xie, F. Yang, Y. S. Li, G. X. Wang, X. H. Bao, Energy Environ. Sci. 2018, 11, 1204–1210.
- 4K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760–764.
- 5S. Y. Li, J. H. Nie, Y. X. Shi, X. L. Tao, F. Wang, J. W. Tian, S. Q. Lin, X. Y. Chen, Z. L. Wang, Adv. Mater. 2020, 32, 2001307.
- 6C. Tang, Q. Zhang, Adv. Mater. 2017, 29, 1604103.
- 7Z. S. Fang, Y. Li, J. Li, C. H. Shu, L. F. Zhong, S. L. Lu, C. S. Mo, M. J. Yang, D. S. Yu, Angew. Chem. Int. Ed. 2021, 60, 17615–17621; Angew. Chem. 2021, 133, 17756–17762.
- 8X. Y. Yan, D. H. Li, L. X. Zhang, X. J. Long, D. J. Yang, Appl. Catal. B 2022, 304, 120908.
- 9
- 9aX. J. Long, D. H. Li, B. B. Wang, Z. J. Jiang, W. J. Xu, B. B. Wang, D. J. Yang, Y. Z. Xia, Angew. Chem. Int. Ed. 2019, 58, 11369–11373; Angew. Chem. 2019, 131, 11491–11495;
- 9bD. H. Li, B. B. Wang, X. J. Long, W. Xu, Y. Z. Xia, D. J. Yang, X. D. Yao, Angew. Chem. Int. Ed. 2021, 60, 26483–26488; Angew. Chem. 2021, 133, 26687–26692.
- 10
- 10aJ. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228–231;
- 10bX. Y. Guan, H. Li, Y. C. Ma, M. Xue, Q. R. Fang, Y. S. Yan, V. Valtchev, S. L. Qiu, Nat. Chem. 2019, 11, 587–594;
- 10cS. C. Yan, X. Y. Guan, H. Li, D. H. Li, M. Xue, Y. S. Yan, V. Valtchev, S. L. Qiu, Q. R. Fang, J. Am. Chem. Soc. 2019, 141, 2920–2924;
- 10dY. Wu, Z. J. Li, W. Ma, Y. Huang, L. J. Huo, X. Guo, M. J. Zhang, H. Ade, J. H. Hou, Adv. Mater. 2013, 25, 3449–3455;
- 10eD. H. Li, C. Y. Li, L. J. Zhang, H. Li, L. K. Zhu, D. J. Yang, Q. R. Fang, S. L. Qiu, X. D. Yao, J. Am. Chem. Soc. 2020, 142, 8104–8108;
- 10fS. Nandi, S. K. Singh, D. Mullangi, R. Illathvalappil, L. George, C. P. Vinod, S. Kurungot, R. Vaidhyanathan, Adv. Energy Mater. 2016, 6, 1601189;
- 10gD. Mullangi, V. Dhavale, S. Shalini, S. Nandi, S. Collins, T. Woo, S. Kurungot, R. Vaidhyanathan, Adv. Energy Mater. 2016, 6, 1600110.
- 11I. Osaka, T. Abe, S. Shinamura, K. Takimiya, J. Am. Chem. Soc. 2011, 133, 6852–6860.
- 12P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, A. Thomas, J. Schmidt, J. Am. Chem. Soc. 2018, 140, 1423–1427.
- 13Y. Z. Wang, Z. Y. Zhang, Y. C. Mao, X. D. Wang, Energy Environ. Sci. 2020, 13, 3993–4016.
- 14T. Sick, J. M. Rotter, S. Reuter, S. Kandambeth, N. N. Bach, M. Döblinger, J. Merz, T. Clark, T. B. Marder, T. Bein, D. D. Medina, J. Am. Chem. Soc. 2019, 141, 12570–12581.
- 15S. L. Lu, Y. M. Hu, S. Wan, R. McCaffrey, Y. H. Jin, H. W. Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082–17088.
- 16C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821–16824.
- 17Z. D. Lei, Q. S. Yang, Y. Xu, S. Y. Guo, W. W. Sun, H. Liu, L.-P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018, 9, 576.
- 18Q. Wu, M.-J. Mao, Q.-J. Wu, J. Liang, Y.-B. Huang, R. Cao, Small 2021, 17, 2004933.
- 19Y. S. Zhao, J. W. Wan, H. Y. Yao, L. J. Zhang, K. F. Lin, L. Wang, N. L. Yang, D. B. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. J. Zhao, Y. L. Li, D. Wang, Nat. Chem. 2018, 10, 924–931.
- 20K. J. Chen, K. Liu, P. D. An, H. J. Li, Y. Y. Lin, J. H. Hu, C. K. Jia, J. W. Fu, H. M. Li, H. Liu, Z. Lin, W. Z. Li, J. H. Li, Y.-R. Lu, T.-S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173.
- 21
- 21aG.-R. Zhang, M. Munoz, B. J. M. Etzold, Angew. Chem. Int. Ed. 2016, 55, 2257–2261; Angew. Chem. 2016, 128, 2298–2302;
- 21bY. P. Sheng, S. L. Song, X. L. Wang, L. Z. Song, C. J. Wang, H. H. Sun, X. Q. Niu, Electrochim. Acta 2011, 56, 8651–8656.
- 22N. Keller, M. Calik, D. Sharapa, H. R. Soni, P. M. Zehetmaier, S. Rager, F. Auras, A. C. Jakowetz, A. Görling, T. Clark, T. Bein, J. Am. Chem. Soc. 2018, 140, 16544–16552.
- 23J. Yang, J. F. Jing, Y. F. Zhu, Adv. Mater. 2021, 33, 2101026.
- 24S. Bi, P. Thiruvengadam, S. Wei, W. B. Zhang, F. Zhang, L. S. Gao, J. S. Xu, D. Q. Wu, J.-S. Chen, F. Zhang, J. Am. Chem. Soc. 2020, 142, 11893–11900.
- 25Y. Yin, C. B. Wu, G. H. Yu, H. Z. Wang, Q. Han, L. T. Qu, J. Mater. Chem. A 2021, 9, 7881–7887.
- 26G. Z. Wang, Q. L. Sun, Y. Y. Liu, B. B. Huang, Y. Dai, X. Y. Zhang, X. Y. Qin, Chem. Eur. J. 2015, 21, 2364–2367.
- 27
- 27aF. T. Yu, Z. Q. Wang, S. C. Zhang, H. N. Ye, K. Y. Kong, X. Q. Gong, J. L. Hua, H. Tian, Adv. Funct. Mater. 2018, 28, 1804512;
- 27bG. F. Zhao, Y. H. Zhang, Z. H. Gao, H. N. Li, S. M. Liu, S. Cai, X. F. Yang, H. Guo, X. L. Sun, ACS Energy Lett. 2020, 5, 1022–1031.
- 28G.-L. Chai, Z. F. Hou, D.-J. Shu, T. Ikeda, K. Terakura, J. Am. Chem. Soc. 2014, 136, 13629–13640.
- 29T. Lu, Q. X. Chen, Theor. Chem. Acc. 2020, 139, 25.
- 30R. Pino-Rios, D. Inostroza, G. Cárdenas-Jirón, W. Tiznado, J. Phys. Chem. A 2019, 123, 10556–10562.
- 31M. Martínez-Fernández, E. Martínez-Periñán, S. Royuela, J. I. Martínez, F. Zamora, E. Lorenzo, J. L. Segura, Appl. Mater. Today 2022, 26, 101384.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.