Anion-Guided Stepwise Assembly of High-Nuclearity Lanthanide Hydroxide Clusters
Weiming Huang
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Wanmin Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorQixia Bai
College of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorDr. Zhe Zhang
College of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dr. Min Feng
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Zhiping Zheng
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorWeiming Huang
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorDr. Wanmin Chen
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorQixia Bai
College of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorDr. Zhe Zhang
College of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dr. Min Feng
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Zhiping Zheng
Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055 China
Search for more papers by this authorAbstract
The ability to construct complex molecular architectures with precise control is critical for realizing molecule-based materials and functions. Using the assembly of a 60-metal complex of ErIII with histidine as an example, we demonstrate the rational assembly of otherwise synthetically elusive polynuclear lanthanide hydroxide clusters directed by the combined set of I− and CO32− as templates. We succeeded in the stepwise transformation starting from Er12 to Er60 by way of two key intermediates Er34 and Er48. The Er12, Er34, and Er48 core motifs represent respectively 1/6, 1/2, and 3/4 of the complete sodalite cage of Er60. This work, representing a rare example of rationally constructing high-nuclearity lanthanide clusters guided by judiciously chosen templates, is expected to stimulate more future efforts for the controllable synthesis of complex molecular or supramolecular architectures with unprecedented structural sophistication and possibly useful properties.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202205385-sup-0001-misc_information.pdf12.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Wang, Z. Zheng, T. Jin, R. J. Staples, Angew. Chem. Int. Ed. 1999, 38, 1813–1815;
10.1002/(SICI)1521-3773(19990614)38:12<1813::AID-ANIE1813>3.0.CO;2-3 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 1929–1932.10.1002/(SICI)1521-3757(19990614)111:12<1929::AID-ANGE1929>3.0.CO;2-F Web of Science® Google Scholar
- 2
- 2aE. Baraniak, R. S. L. Bruce, H. C. Freeman, N. J. Hair, J. James, Inorg. Chem. 1976, 15, 2226–2230;
- 2bJ. C. Plakatouras, I. Baxter, M. B. Hursthouse, K. M. A. Malik, J. McAleese, S. R. Drake, J. Chem. Soc. Chem. Commun. 1994, 2455–2456.
- 3Z. Zheng, Chem. Commun. 2001, 2521–2529.
- 4
- 4aF.-S. Guo, Y.-C. Chen, L.-L. Mao, W.-Q. Lin, J.-D. Leng, R. Tarasenko, M. Orendáč, J. Prokleška, V. Sechovský, M.-L. Tong, Chem. Eur. J. 2013, 19, 14876–14885;
- 4bX.-Y. Li, H.-F. Su, Q.-W. Li, R. Feng, H.-Y. Bai, H.-Y. Chen, J. Xu, X.-H. Bu, Angew. Chem. Int. Ed. 2019, 58, 10184–10188; Angew. Chem. 2019, 131, 10290–10294;
- 4cJ.-B. Peng, X.-J. Kong, Q.-C. Zhang, M. Orendáč, J. Prokleška, Y.-P. Ren, L.-S. Long, Z. Zheng, L.-S. Zheng, J. Am. Chem. Soc. 2014, 136, 17938–17941;
- 4dX.-Y. Zheng, Y.-H. Jiang, G.-L. Zhuang, D.-P. Liu, H.-G. Liao, X.-J. Kong, L.-S. Long, L.-S. Zheng, J. Am. Chem. Soc. 2017, 139, 18178–18181;
- 4eG. Calvez, F. Le Natur, C. Daiguebonne, K. Bernot, Y. Suffren, O. Guillou, Coord. Chem. Rev. 2017, 340, 134–153.
- 5
- 5aX.-Y. Zheng, X.-J. Kong, Z. Zheng, L.-S. Long, L.-S. Zheng, Acc. Chem. Res. 2018, 51, 517–525;
- 5bW. Huang, Q. Liu, W. Chen, M. Feng, Z. Zheng, Magnetochemistry 2021, 7, 161;
- 5cD. T. Thielemann, A. T. Wagner, E. Rösch, D. K. Kölmel, J. G. Heck, B. Rudat, M. Neumaier, C. Feldmann, U. Schepers, S. Bräse, P. W. Roesky, J. Am. Chem. Soc. 2013, 135, 7454–7457.
- 6
- 6aL. Qin, Y.-Z. Yu, P.-Q. Liao, W. Xue, Z. Zheng, X.-M. Chen, Y.-Z. Zheng, Adv. Mater. 2016, 28, 10772–10779;
- 6bD. Shi, X. Yang, H. Chen, D. Jiang, J. Liu, Y. Ma, D. Schipper, R. A. Jones, Chem. Commun. 2019, 55, 13116–13119;
- 6cJ.-L. Liu, Y.-C. Chen, F.-S. Guo, M.-L. Tong, Coord. Chem. Rev. 2014, 281, 26–49;
- 6dY.-Z. Zheng, G.-J. Zhou, Z. Zheng, R. E. P. Winpenny, Chem. Soc. Rev. 2014, 43, 1462–1475;
- 6eZ.-H. Pan, Z.-Z. Weng, X.-J. Kong, L.-S. Long, L.-S. Zheng, Coord. Chem. Rev. 2022, 457, 214419;
- 6fA. T. Wagner, P. W. Roesky, Eur. J. Inorg. Chem. 2016, 782–791;
- 6gR. Yao, Y. Li, Y. Chen, B. Xu, C. Chen, C. Zhang, J. Am. Chem. Soc. 2021, 143, 17360–17365.
- 7R. Wang, H. D. Selby, H. Liu, M. D. Carducci, T. Jin, Z. Zheng, J. W. Anthis, R. J. Staples, Inorg. Chem. 2002, 41, 278–286.
- 8
- 8aX.-Y. Zheng, J. Xie, X.-J. Kong, L.-S. Long, L.-S. Zheng, Coord. Chem. Rev. 2019, 378, 222–236;
- 8bQ. M. Wang, Y. M. Lin, K. G. Liu, Acc. Chem. Res. 2015, 48, 1570–1579;
- 8cZ. Wang, R. K. Gupta, G. G. Luo, D. Sun, Chem. Rec. 2020, 20, 389–402;
- 8dR. Vilar, Angew. Chem. Int. Ed. 2003, 42, 1460–1477; Angew. Chem. 2003, 115, 1498–1516;
- 8eY. Jin, C. Zhang, X.-Y. Dong, S.-Q. Zang, T. C. W. Mak, Chem. Soc. Rev. 2021, 50, 2297–2319;
- 8fN. Gimeno, R. Vilar, Coord. Chem. Rev. 2006, 250, 3161–3189;
- 8gP. D. Beer, P. A. Gale, Angew. Chem. Int. Ed. 2001, 40, 486–516;
10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 502–532;
- 8hS. Greiner, J. Hettig, A. Laws, K. Baumgärtner, J. Bustos, A.-C. Pöppler, A. H. Clark, M. Nyman, C. Streb, M. Anjass, Angew. Chem. Int. Ed. 2022, 61, e202114548; Angew. Chem. 2022, 134, e202114548.
- 9R. Anwander, Angew. Chem. Int. Ed. 1998, 37, 599–602;
10.1002/(SICI)1521-3773(19980316)37:5<599::AID-ANIE599>3.0.CO;2-1 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 619–622.
- 10W. Huang, Z. Zhang, Y. Wu, W. Chen, D. A. Rotsch, L. Messerle, Z. Zheng, Inorg. Chem. Front. 2021, 8, 26–34.
- 11G.-J. Zhou, W.-P. Chen, Y. Yu, L. Qin, T. Han, Y.-Z. Zheng, Inorg. Chem. 2017, 56, 12821–12829.
- 12L. Qin, G.-J. Zhou, Y.-Z. Yu, H. Nojiri, C. Schröder, R. E. P. Winpenny, Y.-Z. Zheng, J. Am. Chem. Soc. 2017, 139, 16405–16411.
- 13
- 13aX.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng, Z. Zheng, J. Am. Chem. Soc. 2009, 131, 6918–6919;
- 13bX.-M. Luo, Z.-B. Hu, Q.-F. Lin, W. Cheng, J.-P. Cao, C.-H. Cui, H. Mei, Y. Song, Y. Xu, J. Am. Chem. Soc. 2018, 140, 11219–11222.
- 14Deposition Numbers 2152482 (for Er34), 2152483 (for Er48), 2152484 (for Er60), and 2152485 (for Er60′) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 15S.-S. Chen, H.-F. Su, L.-S. Long, L.-S. Zheng, X.-J. Kong, Inorg. Chem. 2021, 60, 16922–16926.
- 16J. P. F. Nunes, J. Holub, D. W. H. Rankin, D. A. Wann, D. Hnyk, Dalton Trans. 2015, 44, 11819–11826.
- 17G. Calvez, C. Daiguebonne, O. Guillou, Inorg. Chem. 2011, 50, 2851–2858.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.