Sulfur-Doped Quintuple [9]Helicene with Azacorannulene as Core
Yin-Fu Wu
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorSi-Wei Ying
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorSong-Di Liao
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLing Zhang
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJun-Jie Du
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBin-Wen Chen
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Han-Rui Tian
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorFang-Fang Xie
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHan Xu
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Shun-Liu Deng
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qianyan Zhang
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Su-Yuan Xie
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Lan-Sun Zheng
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorYin-Fu Wu
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorSi-Wei Ying
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorSong-Di Liao
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorLing Zhang
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorJun-Jie Du
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBin-Wen Chen
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorDr. Han-Rui Tian
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorFang-Fang Xie
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHan Xu
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Shun-Liu Deng
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Qianyan Zhang
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Su-Yuan Xie
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorProf. Dr. Lan-Sun Zheng
State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorAbstract
Herein, a hetero(S,N)-quintuple [9]helicene (SNQ9H) molecule with an azacorannulene core was synthesized, currently representing the highest hetero-helicene reported in the field of multiple [n]helicenes. X-ray crystallography indicated that SNQ9H includes not only a propeller-shaped conformer SNQ9H-1, but also an unforeseen quasi-propeller-shaped conformer SNQ9H-2. Different conformers were observed for the first time in multiple [n≥9]helicenes, likely owing to the doping of heteroatomic sulfurs in the helical skeletons. Remarkably, the ratio of SNQ9H-1 to SNQ9H-2 can be regulated in situ by the reaction temperature. Experimental studies on the photophysical and redox properties of SNQ9H and theoretical calculations clearly demonstrated that the electronic structures of SNQ9H depend on their molecular conformations. The strategy of introducing heteroatomic sulfurs into the helical skeleton may be useful in constructing various conformers of higher multiple [n]helicenes in the future.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202204334-sup-0001-2152386.cif12.3 MB | Supporting Information |
ange202204334-sup-0001-2152478.cif22.8 MB | Supporting Information |
ange202204334-sup-0001-misc_information.pdf7.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Gingras, G. Félix, R. Peresutti, Chem. Soc. Rev. 2013, 42, 1007–1050;
- 1bM. Gingras, Chem. Soc. Rev. 2013, 42, 1051–1095;
- 1cY. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463–1535.
- 2
- 2aT. Mori, Chem. Rev. 2021, 121, 2373–2412;
- 2bC. Li, Y. Yang, Q. Miao, Chem. Asian J. 2018, 13, 884–894;
- 2cK. Kato, Y. Segawa, K. Itami, Synlett 2019, 30, 370–377.
- 3
- 3aC. Li, H. Wu, T. Zhang, Y. Liang, B. Zheng, J. Xia, J. Xu, Q. Miao, Chem 2018, 4, 1416–1426;
- 3bC. Li, Y. Wang, T. Zhang, B. Zheng, J. Xu, Q. Miao, Chem. Asian J. 2019, 14, 1676–1680.
- 4
- 4aS. Xiao, M. Myers, Q. Miao, S. Sanaur, K. Pang, M. L. Steigerwald, C. Nuckolls, Angew. Chem. Int. Ed. 2005, 44, 7390–7394; Angew. Chem. 2005, 117, 7556–7560;
- 4bJ. Luo, X. Xu, R. Mao, Q. Miao, J. Am. Chem. Soc. 2012, 134, 13796–13803;
- 4cL. Shan, D. Liu, H. Li, X. Xu, B. Shan, J.-B. Xu, Q. Miao, Adv. Mater. 2015, 27, 3418–3423;
- 4dY. Zhong, B. Kumar, S. Oh, M. T. Trinh, Y. Wu, K. Elbert, P. Li, X. Zhu, S. Xiao, F. Ng, M. L. Steigerwald, C. Nuckolls, J. Am. Chem. Soc. 2014, 136, 8122–8130.
- 5
- 5aC. B. Nielsen, S. Holliday, H.-Y. Chen, S. J. Cryer, I. McCulloch, Acc. Chem. Res. 2015, 48, 2803–2812;
- 5bN. J. Tremblay, A. A. Gorodetsky, M. P. Cox, T. Schiros, B. Kim, R. Steiner, Z. Bullard, A. Sattler, W.-Y. So, Y. Itoh, M. F. Toney, H. Ogasawara, A. P. Ramirez, I. Kymissis, M. L. Steigerwald, C. Nuckolls, ChemPhysChem 2010, 11, 799–803;
- 5cN. Liang, D. Meng, Z. Wang, Acc. Chem. Res. 2021, 54, 961–975;
- 5dX. Liu, X. Du, J. Wang, C. Duan, X. Tang, T. Heumueller, G. Liu, Y. Li, Z. Wang, J. Wang, F. Liu, N. Li, C. J. Brabec, F. Huang, Y. Cao, Adv. Energy Mater. 2018, 8, 1801699.
- 6
- 6aL. Zhang, I. Song, J. Ahn, M. Han, M. Linares, M. Surin, H.-J. Zhang, J. H. Oh, J. Lin, Nat. Commun. 2021, 12, 142;
- 6bY. Yang, R. C. da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics 2013, 7, 634–638.
- 7T. Hosokawa, Y. Takahashi, T. Matsushima, S. Watanabe, S. Kikkawa, I. Azumaya, A. Tsurusaki, K. Kamikawa, J. Am. Chem. Soc. 2017, 139, 18512–18521.
- 8T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 7763–7768.
- 9T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2016, 138, 3587–3595.
- 10Y. Hu, X.-Y. Wang, P.-X. Peng, X.-C. Wang, X.-Y. Cao, X. Feng, K. Müllen, A. Narita, Angew. Chem. Int. Ed. 2017, 56, 3374–3378; Angew. Chem. 2017, 129, 3423–3427.
- 11
- 11aD. Meng, G. Liu, C. Xiao, Y. Shi, L. Zhang, L. Jiang, K. K. Baldridge, Y. Li, J. S. Siegel, Z. Wang, J. Am. Chem. Soc. 2019, 141, 5402–5408;
- 11bB. Liu, M. Böckmann, W. Jiang, N. L. Doltsinis, Z. Wang, J. Am. Chem. Soc. 2020, 142, 7092–7099.
- 12Y. Wang, Z. Yin, Y. Zhu, J. Gu, Y. Li, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 587–591; Angew. Chem. 2019, 131, 597–601.
- 13K. Kato, Y. Segawa, L. T. Scott, K. Itami, Angew. Chem. Int. Ed. 2018, 57, 1337–1341; Angew. Chem. 2018, 130, 1351–1355.
- 14H.-A. Lin, K. Kato, Y. Segawa, L. T. Scott, K. Itami, Chem. Sci. 2019, 10, 2326–2330.
- 15
- 15aM. Stępień, E. Gońka, M. Żyła, N. Sprutta, Chem. Rev. 2017, 117, 3479–3716;
- 15bA. Borissov, Y. K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska, M. Stępień, Chem. Rev. 2022, 122, 565–788.
- 16
- 16aA. Pradhan, P. Dechambenoit, H. Bock, F. Durola, Angew. Chem. Int. Ed. 2011, 50, 12582–12585; Angew. Chem. 2011, 123, 12790–12793;
- 16bD. Meng, H. Fu, C. Xiao, X. Meng, T. Winands, W. Ma, W. Wei, B. Fan, L. Huo, N. L. Doltsinis, Y. Li, Y. Sun, Z. Wang, J. Am. Chem. Soc. 2016, 138, 10184–10190;
- 16cX. Gu, X. Xu, H. Li, Z. Liu, Q. Miao, J. Am. Chem. Soc. 2015, 137, 16203–16208;
- 16dX.-Y. Wang, A. Narita, W. Zhang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 9021–9024;
- 16eX.-Y. Wang, X.-C. Wang, A. Narita, M. Wagner, X.-Y. Cao, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 12783–12786;
- 16fY. Hu, G. M. Paternò, X.-Y. Wang, X.-C. Wang, M. Guizzardi, Q. Chen, D. Schollmeyer, X.-Y. Cao, G. Cerullo, F. Scotognella, K. Müllen, A. Narita, J. Am. Chem. Soc. 2019, 141, 12797–12803.
- 17
- 17aK. Nakamura, S. Furumi, M. Takeuchi, T. Shibuya, K. Tanaka, J. Am. Chem. Soc. 2014, 136, 5555–5558;
- 17bM. Ferreira, G. Naulet, H. Gallardo, P. Dechambenoit, H. Bock, F. Durola, Angew. Chem. Int. Ed. 2017, 56, 3379–3382; Angew. Chem. 2017, 129, 3428–3431.
- 18
- 18aS. H. Pun, K. M. Cheung, D. Yang, H. Chen, Y. Wang, S. V. Kershaw, Q. Miao, Angew. Chem. Int. Ed. 2022, 61, e202113203; Angew. Chem. 2022, 134, e202113203;
- 18bJ. Wang, C. Shen, G. Zhang, F. Gan, Y. Ding, H. Qiu, Angew. Chem. Int. Ed. 2022, 61, e2021115979; Angew. Chem. 2022, 134, e202115979.
- 19
- 19aY. Zhu, Z. Xia, Z. Cai, Z. Yuan, N. Jiang, T. Li, Y. Wang, X. Guo, Z. Li, S. Ma, D. Zhong, Y. Li, J. Wang, J. Am. Chem. Soc. 2018, 140, 4222–4226;
- 19bY. Zhu, X. Guo, Y. Li, J. Wang, J. Am. Chem. Soc. 2019, 141, 5511–5517;
- 19cX. Guo, Z. Yuan, Y. Zhu, Z. Li, R. Huang, Z. Xia, W. Zhang, Y. Li, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 16966–16972; Angew. Chem. 2019, 131, 17122–17128;
- 19dY. Chen, C. Lin, Z. Luo, Z. Yin, H. Shi, Y. Zhu, J. Wang, Angew. Chem. Int. Ed. 2021, 60, 7796–7801; Angew. Chem. 2021, 133, 7875–7880.
- 20
- 20aS. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 7256–7260; Angew. Chem. 2015, 127, 7364–7368;
- 20bH. Yokoi, Y. Hiraoka, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215.
- 21
- 21aH. Yokoi, S. Hiroto, H. Shinokubo, J. Am. Chem. Soc. 2018, 140, 4649–4655;
- 21bH. Yokoi, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Chem. Sci. 2018, 9, 819–824;
- 21cM. Takeda, S. Hiroto, H. Yokoi, S. Lee, D. Kim, H. Shinokubo, J. Am. Chem. Soc. 2018, 140, 6336–6342.
- 22
- 22aZ.-Z. Zhu, Z.-C. Chen, Y.-R. Yao, C.-H. Cui, S.-H. Li, X.-J. Zhao, Q. Zhang, H.-R. Tian, P.-Y. Xu, F.-F. Xie, X.-M. Xie, Y.-Z. Tan, S.-L. Deng, M. Quimby Jennifer, T. Scott Lawrence, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Sci. Adv. 5, eaaw0982;
- 22bP. Rempala, J. Kroulík, B. T. King, J. Am. Chem. Soc. 2004, 126, 15002–15003.
- 23U. D. Priyakumar, G. N. Sastry, J. Phys. Chem. A 2001, 105, 4488–4494.
- 24Deposition Numbers 2152478 (for SNQ9H-1) and 2152386 (for SNQ9H-2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.