Reversible One- to Two- to Three-Dimensional Transformation in CuII Coordination Polymer
Yao Jing
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Yukihiro Yoshida
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorPingping Huang
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Hiroshi Kitagawa
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorYao Jing
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Yukihiro Yoshida
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorPingping Huang
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorCorresponding Author
Prof. Hiroshi Kitagawa
Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
Search for more papers by this authorAbstract
A reversible transformation between 1D, 2D, and 3D is demonstrated for the first time in coordination polymers comprising CuII ions and bidentate terephthalate (BDC2−). 1D uniform chains were reversibly transformed into 2D layers with the construction of Cu-paddlewheels by eliminating water molecules. 2D/3D reversible transformation was achieved by removing/rebinding N,N-dimethylformamide coordinated to the paddlewheels. These dimensional transformations significantly changed chemical and physical properties such as gas sorption and magnetism. Although the uptake in open-framework 1D and 2D Cu-BDC was insignificant, pronounced absorption was observed for 3D Cu-BDC. Drastic difference in magnetic behavior is consistent with their coordination structures; uniform 1D chain of CuII in 1D Cu-BDC and 2D sheet based on CuII-paddlewheel dimers in 2D Cu-BDC. Ferromagnetic behavior observed in air-exposed 3D Cu-BDC is attributed to the 3D structure formed by the connection of 2D sheets.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202117417-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Brus, Acc. Chem. Res. 2014, 47, 2951–2959;
- 1bM. H. Whangbo, Acc. Chem. Res. 1983, 16, 95–101;
- 1c Electronic structure and electronic transitions in layered materials (Ed.: V. Grasso), D. Reidel Publishing, Dordrecht, 1986;
10.1007/978-94-009-4542-5_2 Google Scholar
- 1dB. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–1658.
- 2
- 2aJ. S. Miller, Extended Linear Chain Compounds, Vols. 1–3, Springer-Verlag, New York, 1982;
10.1007/978-1-4613-3249-7 Google Scholar
- 2bS. R. Batten, S. M. Neville, D. Turner, Coordination Polymers: Design, Analysis and Applications, Vol. 7, RSC, Cambridge, 2009.
- 3
- 3aM. J. Rosseinsky, Chem. Mater. 1998, 10, 2665–2685;
- 3bO. Gunnarsson, Rev. Mod. Phys. 1997, 69, 575–606.
- 4
- 4aT. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors, 2nd ed., Springer, Berlin, 1998;
10.1007/978-3-642-58262-2 Google Scholar
- 4bK. Kanoda, R. Kato, Annu. Rev. Condens. Matter Phys. 2011, 2, 167–188.
- 5
- 5aJ. Jiang, Y. Zhao, O. M. Yaghi, J. Am. Chem. Soc. 2016, 138, 3255–3265;
- 5bC. H. Li, J. L. Zuo, Adv. Mater. 2020, 32, e1903762.
- 6
- 6aS. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Adv. Mater. 2018, 30, 1704303;
- 6bM. S. Lohse, T. Bein, Adv. Funct. Mater. 2018, 28, 1705553.
- 7
- 7aB. Li, H. M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016, 28, 8819–8860;
- 7bJ.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
- 8
- 8aJ. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C. Y. Su, Chem. Soc. Rev. 2014, 43, 6011–6061;
- 8bA. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 2015, 44, 6804–6849;
- 8cL. Zhu, X. Q. Liu, H. L. Jiang, L. B. Sun, Chem. Rev. 2017, 117, 8129–8176.
- 9
- 9aR. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed. 2008, 47, 4966–4981; Angew. Chem. 2008, 120, 5044–5059;
- 9bR. B. Getman, Y. S. Bae, C. E. Wilmer, R. Q. Snurr, Chem. Rev. 2012, 112, 703–723.
- 10
- 10aJ. Duan, W. Jin, S. Kitagawa, Coord. Chem. Rev. 2017, 332, 48–74;
- 10bX. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189.
- 11
- 11aS. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109–119;
- 11bG. K. Kole, J. J. Vittal, Chem. Soc. Rev. 2013, 42, 1755–1775;
- 11cG. Chakraborty, I. H. Park, R. Medishetty, J. J. Vittal, Chem. Rev. 2021, 121, 3751–3891;
- 11dM. Edgar, R. Mitchell, A. M. Z. Slawin, P. Lightfoot, P. A. Wright, Chem. Eur. J. 2001, 7, 5168–5175;
10.1002/1521-3765(20011203)7:23<5168::AID-CHEM5168>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 11eR. Medishetty, R. Tandiana, J. Wu, Z. Bai, Y. Du, J. J. Vittal, Chem. Eur. J. 2015, 21, 11948–11953.
- 12M.-L. Hu, A. Morsali, L. Aboutorabi, Coord. Chem. Rev. 2011, 255, 2821–2859.
- 13C. G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, R. A. Gerhardt, R. Tannenbaum, Eur. J. Inorg. Chem. 2009, 2338–2343.
- 14
- 14aS. Cueto, V. Gramlich, W. Petter, F. S. Rys, P. Rys, Acta Crystallogr. Sect. C 1991, 47, 75–78;
- 14bL. Deakin, A. M. Arif, J. S. Miller, Inorg. Chem. 1999, 38, 5072–5077.
- 15
- 15aM. Nara, H. Torii, M. Tasumi, J. Phys. Chem. 1996, 100, 19812–19817;
- 15bG. Zhan, L. Fan, F. Zhao, Z. Huang, B. Chen, X. Yang, S.-f. Zhou, Adv. Funct. Mater. 2019, 29, 1806720.
- 16C. G. Carson, G. Brunnello, S. G. Lee, S. S. Jang, R. A. Gerhardt, Eur. J. Inorg. Chem. 2014, 2140–2145.
- 17M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353–1379.
- 18E. N. Nfor, F. Majoumo-Mbe, P. T. Ndifon, E. O. Duke, E. N. Mainsah, O. E. Offiong, E. A. Eno, J. Solid State Chem. 2013, 201, 133–136.
- 19J. C. Bonner, M. E. Fisher, Phys. Rev. 1964, 135, A640–A658.
- 20B. Bleaney, K. D. Bowers, Proc. R. Soc. London Ser. A 1952, 214, 451–465.
- 21C. A. Téllez S, E. Hollauer, M. A. Mondragon, V. M. Castaño, Spectrochim. Acta Part A 2001, 57, 993–1007.
- 22E. Borfecchia, K. A. Lomachenko, F. Giordanino, H. Falsig, P. Beato, A. V. Soldatov, S. Bordiga, C. Lamberti, Chem. Sci. 2015, 6, 548–563.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.