A Carbene Strategy for Progressive (Deutero)Hydrodefluorination of Fluoroalkyl Ketones
Xiaolong Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorXinyu Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorQingmin Song
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorDr. Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorDr. Zikun Wang
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorProf. Giuseppe Zanoni
Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorCorresponding Author
Prof. Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiaolong Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorXinyu Zhang
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
These authors contributed equally to this work.
Search for more papers by this authorQingmin Song
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorDr. Paramasivam Sivaguru
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorDr. Zikun Wang
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorProf. Giuseppe Zanoni
Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
Search for more papers by this authorCorresponding Author
Prof. Xihe Bi
Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorAbstract
Hydrodefluorination is one of the most promising chemical strategies to degrade perfluorochemicals into partially fluorinated compounds. However, controlled progressive hydrodefluorination remains a significant challenge, owing to the decrease in the strength of C−F bonds along with the defluorination. Here we describe a carbene strategy for the sequential (deutero)hydrodefluorination of perfluoroalkyl ketones under rhodium catalysis, allowing for the controllable preparation of difluoroalkyl- and monofluoroalkyl ketones from aryl- and even alkyl-substituted perfluoro-alkyl ketones in high yield with excellent functional group tolerance. The reaction mechanism and the origin of the intriguing chemoselectivity of the reaction were rationalized by density functional theory (DFT) calculations.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202116190-sup-0001-misc_information.pdf8.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. O′Hagan, Chem. Soc. Rev. 2008, 37, 308–319;
- 1bS. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255–263;
- 1cT. Hiyama, Organofluorine Compounds, Springer, New York, 2000;
10.1007/978-3-662-04164-2 Google Scholar
- 1dB. E. Smart, J. Fluorine Chem. 2001, 109, 3–11;
- 1eJ. B. I. Sap, N. J. W. Straathof, T. Knauber, C. F. Meyer, M. Médebielle, L. Buglioni, C. Genicot, A. A. Trabanco, T. Noël, C. W. am Ende, V. Gouverneur, J. Am. Chem. Soc. 2020, 142, 9181–9187.
- 2
- 2aP. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004;
10.1002/352760393X Google Scholar
- 2bH. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183.
- 3
- 3aJ. L. Kiplinger, T. G. Richmond, C. E. Osterberg, Chem. Rev. 1994, 94, 373–431;
- 3bT. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, Chem. Rev. 2015, 115, 931–972;
- 3cM. F. Kuehnel, D. Lentz, T. Braun, Angew. Chem. Int. Ed. 2013, 52, 3328–3348; Angew. Chem. 2013, 125, 3412–3433;
- 3dH.-J. Ai, X.-X. Ma, Q.-L. Song, X.-F. Wu, Sci. China Chem. 2021, 64, 1630–1659.
- 4
- 4aQ. Shen, Y.-G. Huang, C. Liu, J.-C. Xiao, Q.-Y. Chen, Y. Guo, J. Fluorine Chem. 2015, 179, 14–22;
- 4bF. Jaroschik, Chem. Eur. J. 2018, 24, 14572–14582.
- 5
- 5aM. K. Whittlesey, E. Peris, ACS Catal. 2014, 4, 3152–3159;
- 5bJ.-F. Hu, X.-W. Han, Y. Yuan, Z.-Z. Shi, Angew. Chem. Int. Ed. 2017, 56, 13342–13346; Angew. Chem. 2017, 129, 13527–13531;
- 5cC.-B. Yao, S. Wang, J. Norton, M. Hammond, J. Am. Chem. Soc. 2020, 142, 4793–4799;
- 5dM. Ahrens, G. Scholz, T. Braun, E. Kemnitz, Angew. Chem. Int. Ed. 2013, 52, 5328–5332; Angew. Chem. 2013, 125, 5436–5440;
- 5eI. Mallov, A. J. Ruddy, H. Zhu, S. Grimme, D. W. Stephan, Chem. Eur. J. 2017, 23, 17692–17696;
- 5fS. B. Munoz, C.-F. Ni, Z. Zhang, F. Wang, N. Shao, T. Mathew, G. A. Olah, G. K. S. Prakash, Eur. J. Org. Chem. 2017, 2322–2326;
- 5gH. Dang, A. M. Whittaker, G. Lalic, Chem. Sci. 2016, 7, 505–509;
- 5hD. B. Vogt, C. P. Seath, H.-B. Wang, N. T. Jui, J. Am. Chem. Soc. 2019, 141, 13203–13211;
- 5iH.-B. Wang, N. T. Jui, J. Am. Chem. Soc. 2018, 140, 163–166;
- 5jK. Chen, N. Berg, R. Gschwind, B. König, J. Am. Chem. Soc. 2017, 139, 18444–18447;
- 5kC. Douvris, O. V. Ozerov, Science 2008, 321, 1188–1190.
- 6
- 6aP. J. J. Elving, J. T. Leone, J. Am. Chem. Soc. 1957, 79, 1546–1550;
- 6bH. R. Lund, Acta Chem. Scand. 1959, 13, 192–194;
- 6cJ. P. Coleman, Naser-Ud-Din, H. G. Gilde, J. H. P. Utley, B. C. L. Weedon, J. Chem. Soc. Perkin Trans. 2 1973, 1903–1908;
- 6dC. P. Andrieux, C. Combellas, F. Kanoufi, J. Savéant, A. Thiébault, J. Am. Chem. Soc. 1997, 119, 9527–9540;
- 6eK. Uneyama, K. Maeda, T. Kato, T. Katagiri, Tetrahedron Lett. 1998, 39, 3741–3744;
- 6fK. Uneyama, G. Mizutani, K. Maeda, T. Kato, J. Org. Chem. 1999, 64, 6717–6723.
- 7
- 7aG. K. S. Prakash, J.-B. Hu, G. A. Olah, J. Fluorine Chem. 2001, 112, 357–362;
- 7bY. Nakamura, Y. Ozeki, K. Uneyama, J. Fluorine Chem. 2008, 129, 274–279;
- 7cJ. Wettergren, T. Ankner, G. Hilmersson, Chem. Commun. 2010, 46, 7596–7597;
- 7dJ. R. Box, A. P. Atkins, A. J. J. Lennox, Chem. Sci. 2021, 12, 10252–10258.
- 8
- 8aK. Fuchibe, Y. Ohshima, K. Mitomi, T. Akiyama, J. Fluorine Chem. 2007, 128, 1158–1167;
- 8bK. Fuchibe, Y. Ohshima, K. Mitomi, T. Akiyama, Org. Lett. 2007, 9, 1497–1499;
- 8cA. Hayatifar, A. Borrego, D. Bosek, M. Czarnecki, G. Derocher, A. Kuplicki, E. Lytle, J. Padilla, C. Paroly, G. Tubay, J. Vyletel, C. S. Weinert, Chem. Commun. 2019, 55, 10852–10855;
- 8dD. Dunlop, J. Pinakas, M. Horáček, N. Žilková, M. Lamač, Dalton Trans. 2020, 49, 2771–2775.
- 9
- 9aH. Fang, Q. He, G. Liu, Z. Huang, Org. Lett. 2020, 22, 9298–9302;
- 9bS. Yoshida, K. Shimomori, Y. Kim, T. Hosoya, Angew. Chem. Int. Ed. 2016, 55, 10406–10409; Angew. Chem. 2016, 128, 10562–10565;
- 9cB. Zhu, S. Sakaki, ACS Catal. 2021, 11, 10681–10693;
- 9dJ. Zhang, J.-D. Yang, J.-P. Cheng, Nat. Commun. 2021, 12, 2835;
- 9eS. Ghosh, Z. W. Qu, S. Pradhan, A. Ghosh, S. Grimme, I. Chatterjee, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202115272; Angew. Chem. 2021, https://doi.org/10.1002/ange.202115272;
- 9fM. W. Campbell, V. C. Polites, S. Patel, J. E. Lipson, J. Majhi, G. A. Molander, J. Am. Chem. Soc. 2021, 143, 19648–19654.
- 10
- 10aE. Clot, O. Eisenstein, N. Jasim, S. A. MacGregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333–348;
- 10bH. Iwamoto, H. Imiya, M. Ohashi, S. Ogoshi, J. Am. Chem. Soc. 2020, 142, 19360–19367;
- 10cQ. Ma, C. Liu, G. C. Tsui, Org. Lett. 2020, 22, 5193–5197;
- 10dN. A. Phillips, J. O'Hanlon, T. N. Hooper, A. J. P. White, M. R. Crimmin, Org. Lett. 2019, 21, 7289–7293;
- 10eN. O. Andrella, N. Xu, B. M. Gabidullin, C. Ehm, R. Tom Baker, J. Am. Chem. Soc. 2019, 141, 11506–11521.
- 11Y. Yu, F. Zhang, T. Peng, C. Wang, J. Cheng, C. Chen, K. N. Houk, Y. Wang, Science 2021, 371, 1232–1240.
- 12
- 12aY. Li, Y. Zhao, T. Zhou, M. Chen, Y. Li, M. Huang, Z. Xu, S. Zhu, Q. Zhou, J. Am. Chem. Soc. 2020, 142, 10557–10566;
- 12bS. Zhu, C. Chen, Y. Cai, Q. Zhou, Angew. Chem. Int. Ed. 2008, 47, 932–934; Angew. Chem. 2008, 120, 946–948;
- 12cS. Zhu, Y. Cai, H. Mao, J. Xie, Q. Zhou, Nat. Chem. 2010, 2, 546–551;
- 12dD. J. Miller, C. J. Moody, Tetrahedron 1995, 51, 10811–10843.
- 13
- 13aA. DeAngelis, R. Panish, J. M. Fox, Acc. Chem. Res. 2016, 49, 115–127;
- 13bD. F. Taber, R. J. Herr, S. K. Pack, J. M. Geremia, J. Org. Chem. 1996, 61, 2908–2910.
- 14
- 14aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 14bS. Purser, P. R. Moore, S. Swallow, V. Gourverneur, Chem. Soc. Rev. 2008, 37, 320–330;
- 14cJ. Wang, M. Sánchez-Rosselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506;
- 14dN. A. Meanwell, J. Med. Chem. 2018, 61, 5822–5880;
- 14eJ. Clayden, Nature 2019, 573, 37–38;
- 14fY. Zafrani, S. Saphier, E. Gershonov, Future Med. Chem. 2020, 12, 361–365;
- 14gQ. A. Huchet, B. Kuhn, B. Wagner, N. A. Kratochwil, H. Fischer, M. Kansy, D. Zimmerli, E. M. Carreira, K. Müller, J. Med. Chem. 2015, 58, 9041–9060;
- 14hB. Jeffries, Z. Wang, H. R. Felstead, J. L. Questel, J. S. Scott, E. Chiarparin, J. Graton, B. Linclau, J. Med. Chem. 2020, 63, 1002–1031.
- 15
- 15aA. Citarella, D. Gentile, A. Rescifina, A. Piperno, B. Mognetti, G. Gribaudo, M. T. Sciortino, W. Holzer, V. Pace, N. Micale, Int. J. Mol. Sci. 2021, 22, 1398;
- 15bE. Camerino, D. M. Wong, F. Tong, F. Körber, A. D. Gross, R. Islam, E. Viayna, J. M. Mutunga, J. Li, M. M. Totrov, J. R. Bloomquist, P. R. Carlier, Bioorg. Med. Chem. Lett. 2015, 25, 4405–4411.
- 16A. Funtan, P. Michael, S. Rost, J. Omeis, K. Lienert, W. H. Binder, Adv. Mater. 2021, 33, 2100068.
- 17
- 17aR. F. Wallin, B. M. Regan, M. D. Napoli, I. J. Stern, Anesth. Analg. 1975, 54, 758–766;
- 17bJ.-P. Bégué, D. Bonnet-Delpon, Wiley: Hoboken, 2008;
- 17cJ. Hu, W. Zhang, F. Wang, Chem. Commun. 2009, 7465–7478; and references therein.
- 18
- 18aY.-C. Zhao, B. Gao, C.-F. Ni, J.-B. Hu, Org. Lett. 2012, 14, 6080–6083;
- 18bW.-K. Tang, Z.-W. Xu, J. Xu, F. Tang, X.-X. Li, J.-J. Dai, H.-J. Xu, Y.-S. Feng, Org. Lett. 2019, 21, 196–200;
- 18cY. Zhao, C. Ni, F. Jiang, B. Gao, X. Shen, J. Hu, ACS Catal. 2013, 3, 631–634;
- 18dX. Jiang, S. Sakthivel, K. Kulbitski, G. Nisnevich, M. Gandelman, J. Am. Chem. Soc. 2014, 136, 9548–9551;
- 18eY.-M. Su, G.-S. Feng, Z.-Y. Wang, Q. Lan, X.-S. Wang, Angew. Chem. Int. Ed. 2015, 54, 6003–6007; Angew. Chem. 2015, 127, 6101–6105;
- 18fL. An, Y.-L. Xiao, Q. Min, X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 9079–9083; Angew. Chem. 2015, 127, 9207–9211.
- 19
- 19aJ. L. Brewbaker, H. Hart, J. Am. Chem. Soc. 1969, 91, 711–715;
- 19bM. P. Doyle, M. Yan, J. Org. Chem. 2002, 67, 602–604.
- 20R. Yunoki, A. Yajima, T. Taniguchi, H. Ishibashi, Tetrahedron Lett. 2013, 54, 4102–4105.
- 21
- 21aJ. Helfenbein, C. Lartigue, E. Noirault, E. Azim, J. Legailliard, M. J. Galmier, J. C. Madelmont, J. Med. Chem. 2002, 45, 5806–5808;
- 21bC. S. Elmore, R. A. Bragg, Bioorg. Med. Chem. Lett. 2015, 25, 167–171.
- 22S. E. Scheppele, Chem. Rev. 1972, 72, 511–532.
- 23
- 23aL. S. Busenlehner, R. N. Armstrong, Arch. Biochem. Biophys. 2005, 433, 34–46;
- 23bJ. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed. 2007, 46, 7744–7765; Angew. Chem. 2007, 119, 7890–7911.
- 24
- 24aJ. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int. Ed. 2018, 57, 1758–1784; Angew. Chem. 2018, 130, 1774–1802;
- 24bY. Zhu, J. Zhou, B. Jiao, ACS Med. Chem. Lett. 2013, 4, 349–352;
- 24cA. Katsnelson, Nat. Med. 2013, 19, 656;
- 24dA. Mullard, Nat. Rev. Drug Discovery 2016, 15, 219–221;
- 24eY. Li, Z. Ye, Y.-M. Lin, Y. Liu, Y. Zhang, L. Gong, Nat. Commun. 2021, 12, 2894.
- 25
- 25aJ. C. Baskakis, V. Magrioti, N. Cotton, D. Stephens, V. Constantinou-Kokotou, E. A. Dennis, G. Kokotos, J. Med. Chem. 2008, 51, 8027–8037;
- 25bD. Stumpfe, Y. Hu, D. Dimova, J. Bajorath, J. Med. Chem. 2014, 57, 18–28;
- 25cV. D. Mouchlis, D. Limnios, M. G. Kokotou, E. Barbayianni, G. Kokotos, J. A. McCammon, E. A. Dennis, J. Med. Chem. 2016, 59, 4403–4414.
- 26
- 26aE. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506;
- 26bT. Lu, F.-W. Chen, J. Comput. Chem. 2012, 33, 580–592.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.