Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction
Shahid Zaman
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorYa-Qiong Su
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Chung-Li Dong
Department of Physics, Tamkang University, New Taipei City, Taiwan
These authors contributed equally to this work.
Search for more papers by this authorRuijuan Qi
Department of Information Science and Technology, East China Normal University, 500 Dongchuan Road, Shanghai, 200240 China
Search for more papers by this authorLei Huang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorYanyang Qin
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049 China
Search for more papers by this authorYu-Cheng Huang
Department of Physics, Tamkang University, New Taipei City, Taiwan
Search for more papers by this authorFu-Min Li
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorProf. Bo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorProf. Wei Guo
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorQing Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorProf. Shujiang Ding
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049 China
Search for more papers by this authorCorresponding Author
Prof. Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorShahid Zaman
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorYa-Qiong Su
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Chung-Li Dong
Department of Physics, Tamkang University, New Taipei City, Taiwan
These authors contributed equally to this work.
Search for more papers by this authorRuijuan Qi
Department of Information Science and Technology, East China Normal University, 500 Dongchuan Road, Shanghai, 200240 China
Search for more papers by this authorLei Huang
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorYanyang Qin
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049 China
Search for more papers by this authorYu-Cheng Huang
Department of Physics, Tamkang University, New Taipei City, Taiwan
Search for more papers by this authorFu-Min Li
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorProf. Bo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorProf. Wei Guo
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorQing Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
Search for more papers by this authorProf. Shujiang Ding
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049 China
Search for more papers by this authorCorresponding Author
Prof. Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074 China
Search for more papers by this authorAbstract
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115835-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Xiao, Y. C. Wang, Z. P. Wu, G. Chen, F. Yang, S. Zhu, K. Siddharth, Z. Kong, A. Lu, J. C. Li, C. J. Zhong, Z. Y. Zhou, M. Shao, Adv. Mater. 2021, 33, 2006292.
- 2X. Tian, X. F. Lu, B. Y. Xia, X. W. Lou, Joule 2020, 4, 45.
- 3S. Zaman, L. Huang, A. I. Douka, H. Yang, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 17832; Angew. Chem. 2021, 133, 17976.
- 4Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu, H. Liu, Y. Li, Y. Huang, Adv. Mater. 2019, 31, 1808115.
- 5A. A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J. C. Meier, S. O. Klemm, K. J. Mayrhofer, Angew. Chem. Int. Ed. 2012, 51, 12613; Angew. Chem. 2012, 124, 12782.
- 6C.-L. Yang, L.-N. Wang, Pe. Yin, J. Liu, M.-X. Chen, Q.-Q. Yan, Z.-S. Wang, S.-L. Xu, S.-Q. Chu, C. Cui, H. Ju, J. Zhu, Y. Lin, J. Shui, H.-W. Liang, Science 2021, 374, 459.
- 7L. Castanheira, W. O. Silva, F. H. B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal. 2015, 5, 2184.
- 8Z. Miao, X. Wang, Z. Zhao, W. Zuo, S. Chen, Z. Li, Y. He, J. Liang, F. Ma, H. L. Wang, G. Lu, Y. Huang, G. Wu, Q. Li, Adv. Mater. 2021, 33, 2006613.
- 9J. Yang, R. Hubner, J. Zhang, H. Wan, Y. Zheng, H. Wang, H. Qi, L. He, Y. Li, A. A. Dubale, Y. Sun, Y. Liu, D. Peng, Y. Meng, Z. Zheng, J. Rossmeisl, W. Liu, Angew. Chem. Int. Ed. 2021, 60, 9590; Angew. Chem. 2021, 133, 9676.
- 10Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394.
- 11M. Escudero-Escribano, P. Malacrida, M. H. Hansen, U. Vej-Hansen, A. V. Palenzuela, V. Tripkovic, J. Schiøtz, J. Rossmeisl, I. E. L. Stephens, I. Chorkendorff, Science 2016, 352, 73.
- 12X. Tian, X. Zhao, Y. Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. D. Lou, B. Y. Xia, Science 2019, 366, 850.
- 13S. Ott, A. Orfanidi, H. Schmies, B. Anke, H. N. Nong, J. Hubner, U. Gernert, M. Gliech, M. Lerch, P. Strasser, Nat. Mater. 2020, 19, 77.
- 14Q. Lv, W. Si, J. He, L. Sun, C. Zhang, N. Wang, Z. Yang, X. Li, X. Wang, W. Deng, Y. Long, C. Huang, Y. Li, Nat. Commun. 2018, 9, 3376.
- 15R. S. D. Guo, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361.
- 16L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. J. Liu, Science 2018, 362, 1276.
- 17L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang, B. Y. Xia, Acc. Chem. Res. 2021, 54, 311.
- 18J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 2015, 54, 10102; Angew. Chem. 2015, 127, 10240.
- 19Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W. T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2021, 11, 2100219.
- 20X. Xie, C. He, B. Li, Y. He, D. A. Cullen, E. C. Wegener, A. J. Kropf, U. Martinez, Y. Cheng, M. H. Engelhard, M. E. Bowden, M. Song, T. Lemmon, X. S. Li, Z. Nie, J. Liu, D. J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, Y. Shao, Nat. Catal. 2020, 3, 1044.
- 21L. Huang, Y.-Q. Su, R. Qi, D. Dang, Y. Qin, S. Xi, S. Zaman, B. You, S. Ding, B. Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 25530; Angew. Chem. 2021, 133, 25734.
- 22K. Takeyasu, M. Furukawa, Y. Shimoyama, S. K. Singh, J. Nakamura, Angew. Chem. Int. Ed. 2021, 60, 5121; Angew. Chem. 2021, 133, 5181.
- 23Z. Qiao, C. Wang, Y. Zeng, J. S. Spendelow, G. Wu, Small 2021, 17, 2006805.
- 24K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto, Nat. Nanotechnol. 2021, 16, 140.
- 25W. Fang, L. Huang, S. Zaman, Z. Wang, Y. Han, B. Y. Xia, Chem. Res. Chin. Univ. 2020, 36, 611.
- 26L. Huang, S. Zaman, Z. Wang, H. Niu, B. You, B. Y. Xia, Acta Phys.-Chim. Sin. 2021, 37, 2009035.
- 27L. Liu, A. Corma, Nat. Catal. 2021, 4, 453.
- 28Y. Hu, M. Zhu, X. Luo, G. Wu, T. Chao, Y. Qu, F. Zhou, R. Sun, X. Han, H. Li, B. Jiang, Y. Wu, X. Hong, Angew. Chem. Int. Ed. 2021, 60, 6533; Angew. Chem. 2021, 133, 6607.
- 29S. Zaman, X. Tian, Y.-Q. Su, W. Cai, Y. Yan, R. Qi, A. I. Douka, S. Chen, B. You, H. Liu, S. Ding, X. Guo, B. Y. Xia, Sci. Bull. 2021, 66, 2207.
- 30X. X. Wang, M. T. Swihart, G. Wu, Nat. Catal. 2019, 2, 578.
- 31W. Ding, L. Li, K. Xiong, Y. Wang, W. Li, Y. Nie, S. Chen, X. Qi, Z. Wei, J. Am. Chem. Soc. 2015, 137, 5414–5420.
- 32L. Huang, Z. Hu, H. Jin, J. Wu, K. Liu, Z. Xu, J. Wan, H. Zhou, J. Duan, B. Hu, J. Zhou, Adv. Funct. Mater. 2020, 30, 1908486.
- 33X. Liu, M. Antonietti, Adv. Mater. 2013, 25, 6284.
- 34H. Lee, J. Lim, C. Lee, S. Back, K. An, J. W. Shin, R. Ryoo, Y. Jung, J. Y. Park, Nat. Commun. 2018, 9, 2235.
- 35Z. Qiao, C. Wang, C. Li, Y. Zeng, S. Hwang, B. Li, S. Karakalos, J. H. Park, A. J. Kropf, E. C. Wegener, Q. Gong, H. Xu, G. Wang, D. J. Myers, J. Xie, J. Spendelow, G. Wu, Energy Environ. Sci. 2021, 14, 4948.
- 36W. Xia, J. Tang, J. Li, S. Zhang, K. C. Wu, J. He, Y. Yamauchi, Angew. Chem. Int. Ed. 2019, 58, 13354; Angew. Chem. 2019, 131, 13488.
- 37X. X. Wang, S. Hwang, Y. T. Pan, K. Chen, Y. He, S. Karakalos, H. Zhang, J. S. Spendelow, D. Su, G. Wu, Nano Lett. 2018, 18, 4163.
- 38H. Tian, X. Cui, H. Dong, G. Meng, F. Kong, Y. Chen, L. Peng, C. Chen, Z. Chang, J. Shi, Energy Storage Mater. 2021, 37, 274.
- 39K. L. M. Gang Wu, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
- 40Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen, A. Li, J. Zhao, Y. Xiong, Y. Wu, Y. Gong, T. Yao, W. Liu, L. Zheng, J. Dong, Y. Wang, Z. Zhuang, W. Xing, C.-T. He, C. Peng, W.-C. Cheong, Q. Li, M. Zhang, Z. Chen, N. Fu, X. Gao, W. Zhu, J. Wan, J. Zhang, L. Gu, S. Wei, P. Hu, J. Luo, J. Li, C. Chen, Q. Peng, X. Duan, Y. Huang, X.-M. Chen, D. Wang, Y. Li, Nat. Chem. 2020, 12, 764.
- 41Y. J. Sa, S. O. Park, G. Y. Jung, T. J. Shin, H. Y. Jeong, S. K. Kwak, S. H. Joo, ACS Catal. 2019, 9, 83.
- 42J. Snyder, T. Fujita, M. W. Chen, J. Erlebacher, Nat. Mater. 2010, 9, 904.
- 43D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruna, Nat. Mater. 2013, 12, 81.
- 44C. Zhang, W. Zhang, W. Zheng, ChemCatChem 2019, 11, 655.
- 45Y. He, H. Guo, S. Hwang, X. Yang, Z. He, J. Braaten, S. Karakalos, W. Shan, M. Wang, H. Zhou, Z. Feng, K. L. More, G. Wang, D. Su, D. A. Cullen, L. Fei, S. Litster, G. Wu, Adv. Mater. 2020, 32, 2003577.
- 46S. K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater. 2019, 31, 1804297.
- 47T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong, Y. Wang, S. Zhang, A. Han, L. Gu, R. Yu, X. Wen, H. Ren, L. Xu, C. Chen, Q. Peng, D. Wang, Y. Li, Proc. Natl. Acad. Sci. USA 2018, 115, 12692.
- 48Q. Yang, Y. Jia, F. Wei, L. Zhuang, D. Yang, J. Liu, X. Wang, S. Lin, P. Yuan, X. Yao, Angew. Chem. Int. Ed. 2020, 59, 6122; Angew. Chem. 2020, 132, 6178.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.