Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blue-Emitting Copper Halide Ionic Hybrid Structures
Haibo Li
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong P. R. China
Search for more papers by this authorYi Lv
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorZhennan Zhou
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorHua Tong
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorCorresponding Author
Dr. Wei Liu
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorCorresponding Author
Prof. Gangfeng Ouyang
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorHaibo Li
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong P. R. China
Search for more papers by this authorYi Lv
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorZhennan Zhou
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorHua Tong
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorCorresponding Author
Dr. Wei Liu
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorCorresponding Author
Prof. Gangfeng Ouyang
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, Guangdong P. R. China
Search for more papers by this authorAbstract
Copper halide based organic–inorganic hybrid semiconductors exhibit great potential as light-emitting materials with excellent structural variety and optical tunability. Among them, copper halide hybrid molecular compounds with discrete inorganic modules are particularly interesting due to their high quantum efficiency. However, synthesizing highly efficient blue-emitting molecular clusters remains challenging. Here, we report a novel and facile strategy for the design and synthesis of highly luminescent copper halide hybrid structures by fabricating coordinated anionic inorganic modules in these ionic species. By using this approach, a family of strongly blue-emitting copper halide hybrid ionic structures has been prepared with high internal quantum yields up to 98 %. Strong luminescence from the combination of ionic and covalent bonds in these compounds make them ideal candidates as alternative, rare-earth-element free light-emitting materials for possible use in optoelectronic devices.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115225-sup-0001-CIF_files.rar2 MB | Supporting Information |
ange202115225-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Huang, J. Li, H. Fu, J. Am. Chem. Soc. 2000, 122, 8789–8790;
- 1bX. Huang, J. Li, Y. Zhang, A. Mascarenhas, J. Am. Chem. Soc. 2003, 125, 7049–7055;
- 1cX. Huang, M. Rous-han, T. J. Emge, W. Bi, S. Thiagarajan, J.-H. Cheng, R. Yang, J. Li, Angew. Chem. Int. Ed. 2009, 48, 7871–7874; Angew. Chem. 2009, 121, 8011–8014;
- 1dC. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 1999, 286, 945–947;
- 1eD. B. Mitzi, Pogress in Inorganic Chemistry, Wiley, Hoboken, 2007, pp. 1–121;
- 1fD. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy, Science 1995, 267, 1473–1476.
- 2
- 2aW. Ki, J. Li, J. Am. Chem. Soc. 2008, 130, 8114–8115;
- 2bW. Ki, J. Li, G. Eda, M. Chhowalla, J. Mater. Chem. 2010, 20, 10676–10679;
- 2cM. Roushan, X. Zhang, J. Li, Angew. Chem. Int. Ed. 2012, 51, 436–439; Angew. Chem. 2012, 124, 451–454;
- 2dL. Mao, P. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even, R. D. Schaller, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 13078–13088;
- 2eL. Mao, Y. Wu, C. C. Stoumpos, B. Traore, C. Katan, J. Even, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 11956–11963;
- 2fL. Mao, Y. Wu, C. C. Stoumpos, M. R. Wasielewski, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 5210–5215;
- 2gL. N. Quan, F. P. García de Arquer, R. P. Sabatini, E. H. Sargent, Adv. Mater. 2018, 30, 1801996;
- 2hH. J. Snaith, Nat. Mater. 2018, 17, 372–376;
- 2iN. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photonics 2016, 10, 699;
- 2jY. Zou, M. Ban, Y. Yang, S. Bai, C. Wu, Y. Han, T. Wu, Y. Tan, Q. Huang, X. Gao, T. Song, Q. Zhang, B. Sun, ACS Appl. Mater. Interfaces 2018, 10, 24320–24326.
- 3
- 3aX. Fang, M. Roushan, R. Zhang, J. Peng, H. Zeng, J. Li, Chem. Mater. 2012, 24, 1710–1717;
- 3bM. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, Science 2017, 358, 745–750;
- 3cK. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245–248;
- 3dC. Liu, Y.-B. Cheng, Z. Ge, Chem. Soc. Rev. 2020, 49, 1653–1687;
- 3eC. Zhang, J. Lin, Chem. Soc. Rev. 2012, 41, 7938–7961;
- 3fS. Adjokatse, H.-H. Fang, M. A. Loi, Mater. Today 2017, 20, 413–424;
- 3gH. Lin, C. Zhou, M. Chaaban, L.-J. Xu, Y. Zhou, J. Neu, M. Worku, E. Berkwits, Q. He, S. Lee, X. Lin, T. Siegrist, M.-H. Du, B. Ma, ACS Mater. Lett. 2019, 1, 594–598;
- 3hG. Wu, C. Zhou, W. Ming, D. Han, S. Chen, D. Yang, T. Besara, J. Neu, T. Siegrist, M.-H. Du, B. Ma, A. Dong, ACS Energy Lett. 2018, 3, 1443–1449;
- 3iC. Zhou, H. Lin, H. Shi, Y. Tian, C. Pak, M. Shatruk, Y. Zhou, P. Djurovich, M.-H. Du, B. Ma, Angew. Chem. Int. Ed. 2018, 57, 1021–1024; Angew. Chem. 2018, 130, 1033–1036;
- 3jC. Zhou, H. Lin, M. Worku, J. Neu, Y. Zhou, Y. Tian, S. Lee, P. Djurovich, T. Siegrist, B. Ma, J. Am. Chem. Soc. 2018, 140, 13181–13184.
- 4
- 4aV. W.-W. Yam, V. K.-M. Au, S. Y.-L. Leung, Chem. Rev. 2015, 115, 7589–7728;
- 4bK. Tsuge, Y. Chishina, H. Hashiguchi, Y. Sasaki, M. Kato, S. Ishizaka, N. Kitamura, Coord. Chem. Rev. 2016, 306, Part 2, 636–651;
- 4cH. Araki, K. Tsuge, Y. Sasaki, S. Ishizaka, N. Kitamura, Inorg. Chem. 2005, 44, 9667–9675.
- 5
- 5aR. Peng, M. Li, D. Li, Coord. Chem. Rev. 2010, 254, 1–18;
- 5bW. Liu, Y. Fang, J. Li, Adv. Funct. Mater. 2018, 28, 1705593;
- 5cW. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K. Xiong, Z. Hu, W. P. Lustig, J. Li, J. Am. Chem. Soc. 2015, 137, 9400–9408;
- 5dW. Liu, K. Zhu, S. J. Teat, G. Dey, Z. Shen, L. Wang, D. M. O'Carroll, J. Li, J. Am. Chem. Soc. 2017, 139, 9281–9290.
- 6
- 6aJ.-H. Jia, X.-L. Chen, J.-Z. Liao, D. Liang, M.-X. Yang, R. Yu, C.-Z. Lu, Dalton Trans. 2019, 48, 1418–1426;
- 6bW. Liu, W. P. Lustig, J. Li, EnergyChem 2019, 1, 100008;
10.1016/j.enchem.2019.100008 Google Scholar
- 6cX. Liu, T. Zhang, T. Ni, N. Jiang, Z. Liu, Z. Bian, Z. Lu, C. Huang, Adv. Funct. Mater. 2014, 24, 5385–5392;
- 6dS. Perruchas, X. F. Le Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin, J.-P. Boilot, J. Am. Chem. Soc. 2010, 132, 10967–10969;
- 6eJ. Troyano, F. Zamora, S. Delgado, Chem. Soc. Rev. 2021, 50, 4606–4628;
- 6fB. Huitorel, R. Utrera-Melero, F. Massuyeau, J.-Y. Mevelec, B. Baptiste, A. Polian, T. Gacoin, C. Martineau-Corcos, S. Perruchas, Dalton Trans. 2019, 48, 7899–7909;
- 6gK. Zhu, Z. Cheng, S. Rangan, M. Cotlet, J. Du, L. Kasaei, S. J. Teat, W. Liu, Y. Chen, L. C. Feldman, D. M. O'Carroll, J. Li, ACS Energy Lett. 2021, 6, 2565–2574.
- 7
- 7aY. Fang, W. Liu, S. J. Teat, G. Dey, Z. Shen, L. An, D. Yu, L. Wang, D. M. O'Carroll, J. Li, Adv. Funct. Mater. 2017, 27, 1603444;
- 7bX. Zhang, W. Liu, G. Z. Wei, D. Banerjee, Z. Hu, J. Li, J. Am. Chem. Soc. 2014, 136, 14230–14236;
- 7cI. Jeß, P. Taborsky, J. Pospíšil, C. Näther, Dalton Trans. 2007, 2263–2270;
- 7dW. Ki, X. Hei, H. T. Yi, W. Liu, S. J. Teat, M. Li, Y. Fang, V. Podzorov, E. Garfunkel, J. Li, Chem. Mater. 2021, 33, 5317–5325.
- 8H. Tong, H. Li, Z. Zhou, Cidanpuchi, F. Wang, W. Liu, New J. Chem. 2021, 45, 10989–10996.
- 9S.-L. Li, F.-Q. Zhang, X.-M. Zhang, Chem. Commun. 2015, 51, 8062–8065.
- 10A. V. Artem'ev, M. P. Davydova, X. Hei, M. I. Rakhmanova, D. G. Samsonenko, I. Y. Bagryanskaya, K. A. Brylev, V. P. Fedin, J.-S. Chen, M. Cotlet, J. Li, Chem. Mater. 2020, 32, 10708–10718.
- 11
- 11aP. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625–3648;
- 11bK. R. Kyle, C. K. Ryu, P. C. Ford, J. A. DiBenedetto, J. Am. Chem. Soc. 1991, 113, 2954–2965.
- 12H. Tong, C. Xu, W. Liu, J. Mater. Chem. C 2021, 9, 12530–12534.
- 13W. Liu, K. Zhu, S. J. Teat, B. J. Deibert, W. Yuan, J. Li, J. Mater. Chem. C 2017, 5, 5962–5969.
- 14
- 14aJ.-J. Wang, C. Chen, W.-G. Chen, J.-S. Yao, J.-N. Yang, K.-H. Wang, Y.-C. Yin, M.-M. Yao, L.-Z. Feng, C. Ma, F.-J. Fan, H.-B. Yao, J. Am. Chem. Soc. 2020, 142, 3686–3690;
- 14bX. Hei, J. Li, Chem. Sci. 2021, 12, 3805–3817.
- 15Deposition Numbers 2120522 (for 1), 2120520 (for 2), 2120523 (for 3), 2120526 (for 4), 2120519 (for 5), 2120525 (for 6), 2120521 (for 7), and 2120524 (for 8) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 16
- 16aM. J. Leitl, V. A. Krylova, P. I. Djurovich, M. E. Thompson, H. Yersin, J. Am. Chem. Soc. 2014, 136, 16032–16038;
- 16bG. Cheng, G. K.-M. So, W.-P. To, Y. Chen, C.-C. Kwok, C. Ma, X. Guan, X. Chang, W.-M. Kwok, C.-M. Che, Chem. Sci. 2015, 6, 4623–4635;
- 16cM. Li, Y.-F. Wang, D. Zhang, L. Duan, C.-F. Chen, Angew. Chem. Int. Ed. 2020, 59, 3500–3504; Angew. Chem. 2020, 132, 3528–3532;
- 16dX.-L. Chen, R. Yu, Q.-K. Zhang, L.-J. Zhou, X.-Y. Wu, Q. Zhang, C.-Z. Lu, Chem. Mater. 2013, 25, 3910–3920;
- 16eV. Jankus, P. Data, D. Graves, C. Mcguinness, J. Santos, M. R. Bryce, F. B. Dias, A. P. Monkman, Adv. Funct. Mater. 2014, 24, 6178–6186.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.