A Mechanistically Inspired Halenium Ion Initiated Spiroketalization: Entry to Mono- and Dibromospiroketals
Dr. Kumar Dilip Ashtekar
Cancer Biology Institute, Yale School of Medicine, West Haven, Connecticut, 06516 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Hadi Gholami
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
These authors contributed equally to this work.
Search for more papers by this authorMehdi Moemeni
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorAnkush Chakraborty
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorLindsey Kiiskila
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorDr. Xinliang Ding
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorEdmond Toma
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorChristopher Rahn
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Babak Borhan
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorDr. Kumar Dilip Ashtekar
Cancer Biology Institute, Yale School of Medicine, West Haven, Connecticut, 06516 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Hadi Gholami
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
These authors contributed equally to this work.
Search for more papers by this authorMehdi Moemeni
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorAnkush Chakraborty
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorLindsey Kiiskila
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorDr. Xinliang Ding
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorEdmond Toma
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorChristopher Rahn
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Babak Borhan
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA
Search for more papers by this authorIn memory of Ghazal Nourian and other students lost on Ukrainian Flight 752
Abstract
Employing halenium affinity (HalA) as a guiding tool, the weak nucleophilic character of alkyl ketones was modulated by the templating effect of a tethered 2-tetrahydropyranyl(THP)-protected alcohol towards realizing a bromenium ion initiated spiroketalization cascade. Addition of ethanol aided an early termination of the cascade by scavenging the THP group after the halofunctionalization stage, furnishing monobromospiroketals. Alternatively, exclusion of ethanol from the reaction mixture biased the transient oxocarbenium towards α-deprotonation that precedes a second bromofunctionalization event thus, furnishing dibrominated spiroketals. The regio- and stereoselectivity exploited in the current methodology provides a novel and rapid access to the dibrominated spiroketal motifs exhibited by several natural products.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115173-sup-0001-12a.cif16 KB | Supporting Information |
ange202115173-sup-0001-15.cif311.5 KB | Supporting Information |
ange202115173-sup-0001-8c.cif181.9 KB | Supporting Information |
ange202115173-sup-0001-9c.cif182.2 KB | Supporting Information |
ange202115173-sup-0001-Calculation_of_HalA_values.xlsx16.1 KB | Supporting Information |
ange202115173-sup-0001-Coordinates-DFT.pdf2.8 MB | Supporting Information |
ange202115173-sup-0001-misc_information.pdf6.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Perron, K. F. Albizati, Chem. Rev. 1989, 89, 1617–1661.
- 2
- 2aR. E. Ireland, J. P. Daub, J. Org. Chem. 1983, 48, 1303–1312;
- 2bP. Kocienski, C. Yeates, Tetrahedron Lett. 1983, 24, 3905–3906;
- 2cS. L. Schreiber, T. J. Sommer, K. Satake, Tetrahedron Lett. 1985, 26, 17–20;
- 2dR. E. Ireland, S. Thaisrivongs, P. H. Dussault, J. Am. Chem. Soc. 1988, 110, 5768–5779;
- 2eJ. E. Aho, P. M. Pihko, T. K. Rissa, Chem. Rev. 2005, 105, 4406–4440;
- 2fI. Čorić, B. List, Nature 2012, 483, 315–319;
- 2gZ. K. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074–8077;
- 2hM. Wilsdorf, H. U. Reissig, Angew. Chem. Int. Ed. 2012, 51, 9486–9488; Angew. Chem. 2012, 124, 9624–9626;
- 2iI. Sharma, J. M. Wurst, D. S. Tan, Org. Lett. 2014, 16, 2474–2477;
- 2jK. M. Hilby, S. E. Denmark, J. Org. Chem. 2021, 86, 14250–14289.
- 3
- 3aM. Jakubcová, D. Végh, J. Kožíšek, A. Dvorský, Synth. Commun. 1994, 24, 1333–1338;
- 3bK. Tanaka, N. Harada, J. Chem. Soc. Perkin Trans. 1 2002, 713–714;
- 3cM. de Greef, S. Z. Zard, Org. Lett. 2007, 9, 1773–1776;
- 3dI. Paterson, E. A. Anderson, S. M. Dalby, J. H. Lim, P. Maltas, O. Loiseleur, J. Genovino, C. Moessner, Org. Biomol. Chem. 2012, 10, 5861–5872;
- 3eJ. Wang, H.-T. Zhu, Y.-X. Li, L.-J. Wang, Y.-F. Qiu, Z.-H. Qiu, M.-j. Zhong, X.-Y. Liu, Y.-M. Liang, Org. Lett. 2014, 16, 2236–2239;
- 3fT. Zheng, X. Wang, W.-H. Ng, Y.-L. S. Tse, Y.-Y. Yeung, Nat. Catal. 2020, 3, 993–1001.
- 4
- 4aR. Yousefi, K. D. Ashtekar, D. C. Whitehead, J. E. Jackson, B. Borhan, J. Am. Chem. Soc. 2013, 135, 14524–14527;
- 4bK. D. Ashtekar, N. S. Marzijarani, A. Jaganathan, D. Holmes, J. E. Jackson, B. Borhan, J. Am. Chem. Soc. 2014, 136, 13355–13362;
- 4cK. D. Ashtekar, M. Vetticatt, R. Yousefi, J. E. Jackson, B. Borhan, J. Am. Chem. Soc. 2016, 138, 8114–8119.
- 5
- 5aB. M. Howard, W. Fenical, E. V. Arnold, J. Clardy, Tetrahedron Lett. 1979, 20, 2841–2844;
10.1016/S0040-4039(01)86430-3 Google Scholar
- 5bA. G. González, J. D. Martin, M. Norte, R. Perez, P. Rivera, J. Z. Ruano, M. L. Rodriguez, J. Fayos, A. Perales, Tetrahedron Lett. 1983, 24, 4143–4146;
- 5cM. Suzuki, T. Kawamoto, C. S. Vairappan, T. Ishii, T. Abe, M. Masuda, Phytochemistry 2005, 66, 2787–2793.
- 6N. I. Totah, S. L. Schreiber, J. Org. Chem. 1991, 56, 6255–6256.
- 7J. I. Seeman, Chem. Rev. 1983, 83, 83–134.
- 8Y. Y. Khomutnyk, A. J. Argüelles, G. A. Winschel, Z. Sun, P. M. Zimmerman, P. Nagorny, J. Am. Chem. Soc. 2016, 138, 444–456.
- 9J. Y. Hamilton, S. L. Rössler, E. M. Carreira, J. Am. Chem. Soc. 2017, 139, 8082–8085.
- 10
- 10aW. Kitching, J. A. Lewis, M. T. Fletcher, J. J. Devoss, R. A. I. Drew, C. J. Moore, J. Chem. Soc. Chem. Commun. 1986, 855–856;
- 10bD. P. Negri, Y. Kishi, Tetrahedron Lett. 1987, 28, 1063–1066;
- 10cP. A. Bartlett, I. Mori, J. A. Bose, J. Org. Chem. 1989, 54, 3236–3239;
- 10dE. B. Holson, W. R. Roush, Org. Lett. 2002, 4, 3719–3722;
- 10eM. Commandeur, C. Commandeur, J. Cossy, Org. Lett. 2011, 13, 6018–6021.
- 11C. K. Tan, Y.-Y. Yeung, Chem. Commun. 2013, 49, 7985–7996.
- 12In accord to the Boltzmann distributions observed in our computational analysis (HalA), we surmise as follows: the conformational constrains in the cyclic −OTHP ether of 7 a allows for a more pronounced anomeric effect (towards stability of the oxacarbenium intermediate) in comparison to the conformationally pliable −OMOM ether. Similarly, the conformational flexibility (and the sterics associated with the rotation along ArCH2–O bond) in the p-methoxybenzyl protection in 7 a-PMB, limits the extent of σ→σ* donation required for templating the oxacarbenium intermediate. In contrast, the steric bulk alone of the silyl ethers in 7 a (-TBS and -TES) restrict the proximity of –OSiR3 to ketone carbonyl required for the templation (see TS-4 in Scheme 3b). Hence, the observed mass balance (after extended reaction times) accounted for undesired oxidation and elimination products.
- 13HalA values are thermodyamic state functions. Although the predicted HalA(Br) for the formation of 12 a is lower by about 5 kcal mol−1 (in comparison to 11 a’→8 a), the corresponding hemiketal 11 a is energetically more favored due to its trans-decalin arrangement, orienting the more nucleophilic ether moiety for olefin bromofunctionalization. This case demonstrates the drawback resulting from kinetic bias caused by pre-existing mixture of hemiketals undergoing spiroketalization (Curtin–Hammett principle). Hence, the present approach using protected alcohol circumvents this bias, recoursing the reaction pathway under thermodynamic control. See Supporting Information for further discussion.
- 14
- 14aM. T. Crimmins, A. L. Choy, J. Org. Chem. 1997, 62, 7548–7549;
- 14bM. T. Crimmins, K. A. Emmitte, J. Am. Chem. Soc. 2001, 123, 1533–1534;
- 14cC. Ko, R. P. Hsung, Z. F. Al-Rashid, J. B. Feltenberger, T. Lu, J.-H. Yang, Y. Wei, C. A. Zificsak, Org. Lett. 2007, 9, 4459–4462;
- 14dY. Izuchi, H. Koshino, Y. Hongo, N. Kanomata, S. Takahashi, Org. Lett. 2011, 13, 3360–3363.
- 15Owing to the intramolecular dominance of the templating group, hemiketal adducts of ethanol and 7 a were not observed by 1H NMR analysis (see Supporting Information for details), consequently, the inter-molecular halofunctionalized products arising from the putative ethanol adducts were not obtained.
- 16Deposition Numbers 2124151 (for macrocyclic bromoether-12a), 124153 (for monobromospiroketal-8c), 2124154 (for 6,5-spiroketal-15), and 2124152 (for dibromospiroketal-9c) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 17
- 17aG. A. Hiegel, M. Nalbandy, Synth. Commun. 1992, 22, 1589–1595;
- 17bS. Ladame, M. Willson, J. Perie, Eur. J. Org. Chem. 2002, 2640–2648;
- 17cF. Grein, A. C. Chen, D. Edwards, C. M. Crudden, J. Org. Chem. 2006, 71, 861–872;
- 17dR. P. van Summeren, A. Romaniuk, E. G. Ijpeij, P. L. Alsters, Catal. Sci. Technol. 2012, 2, 2052–2056.
- 18
- 18aS. E. Denmark, M. T. Burk, Proc. Natl. Acad. Sci. USA 2010, 107, 20655;
- 18bW. Zhang, S. Zheng, N. Liu, J. B. Werness, I. A. Guzei, W. Tang, J. Am. Chem. Soc. 2010, 132, 3664–3665;
- 18cU. Hennecke, C. H. Müller, R. Fröhlich, Org. Lett. 2011, 13, 860–863;
- 18dS. E. Denmark, M. T. Burk, Org. Lett. 2012, 14, 256–259;
- 18eC. K. Tan, C. Le, Y.-Y. Yeung, Chem. Commun. 2012, 48, 5793–5795;
- 18fS. E. Denmark, M. T. Burk, Chirality 2014, 26, 344–355;
- 18gV. Pitchumani, D. W. Lupton, Aust. J. Chem. 2020, 73, 1292–1295.
- 19S. F. Tlais, G. B. Dudley, Org. Lett. 2010, 12, 4698–4701.
- 20
- 20aS. Imre, S. Islimyeli, A. Oztunc, R. H. Thomson, Phytochemistry 1981, 20, 833–834;
- 20bT. Kusumi, H. Uchida, Y. Inouye, M. Ishitsuka, H. Yamamoto, H. Kakisawa, J. Org. Chem. 1987, 52, 4597–4600;
- 20cM. Norte, J. J. Fernandez, J. Z. Ruano, Tetrahedron 1989, 45, 5987–5994;
- 20dS. E. N. Ayyad, A. A. M. Dawidar, H. W. Dias, R. A. Howie, J. Jakupovic, R. H. Thomson, Phytochemistry 1990, 29, 3193–3196;
- 20eA. Öztunç, S. Imre, H. Lotter, H. Wagner, Phytochemistry 1991, 30, 255–257;
- 20fE. N. Lawson, W. Kitching, C. H. L. Kennard, K. A. Byriel, J. Org. Chem. 1993, 58, 2501–2508;
- 20gZ. Demirel, F. F. Yilmaz-Koz, N. U. Karabay-Yavasoglu, G. Ozdemir, A. Sukatar, Rom. Biotechnol. Lett. 2011, 16, 5927–5936;
- 20hW. M. Alarif, S. S. Al-Lihaibi, S. E. N. Ayyad, M. H. Abdel-Rhman, F. A. Badria, Eur. J. Med. Chem. 2012, 55, 462–466.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.