2D Active Nanobots Based on Soft Nanoarchitectonics Powered by an Ultralow Fuel Concentration
Corresponding Author
Dr. Motilal Mathesh
School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Australia
Search for more papers by this authorElisha Bhattarai
School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Australia
Search for more papers by this authorCorresponding Author
Prof. Wenrong Yang
School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Australia
Search for more papers by this authorCorresponding Author
Dr. Motilal Mathesh
School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Australia
Search for more papers by this authorElisha Bhattarai
School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Australia
Search for more papers by this authorCorresponding Author
Prof. Wenrong Yang
School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216 Australia
Search for more papers by this authorAbstract
Enzyme catalysis to power micro/nanomotors has received tremendous attention because of the vast potential in applications ranging from biomedicine to environmental remediation. However, the current design is mainly based on a complex three-dimensional (3D) architecture, with limited accessible surface areas for the catalytic sites, and thus requires a higher fuel concentration to achieve active motion. Herein we report for the first time an enzyme-powered 2D nanobot, which was designed by a facile strategy based on soft nanoarchitectonics for active motion at an ultralow fuel concentration (0.003 % H2O2). The 2D nanobots exhibited efficient positive chemotactic behavior and the ability to swim against gravity by virtue of solutal buoyancy. As a proof-of-concept, the 2D nanobots showed an excellent capability for “on-the-fly” removal of methylene blue (MB) dye with an efficiency of 85 %.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113801-sup-0001-misc_information.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Ji, X. Lin, Z. Wu, Y. Wu, W. Gao, Q. He, Angew. Chem. Int. Ed. 2019, 58, 12200–12205; Angew. Chem. 2019, 131, 12328–12333.
- 2S. Sánchez, L. Soler, J. Katuri, Angew. Chem. Int. Ed. 2015, 54, 1414–1444; Angew. Chem. 2015, 127, 1432–1464.
- 3J. Ou, K. Liu, J. Jiang, D. A. Wilson, L. Liu, F. Wang, S. Wang, Y. Tu, F. Peng, Small 2020, 16, 1906184.
- 4T. Kwon, N. Kumari, A. Kumar, J. Lim, C. Y. Son, I. S. Lee, Angew. Chem. Int. Ed. 2021, 60, 17579–17586; Angew. Chem. 2021, 133, 17720–17727.
- 5J. Shao, S. Cao, D. S. Williams, L. K. E. A. Abdelmohsen, J. C. M. van Hest, Angew. Chem. Int. Ed. 2020, 59, 16918–16925; Angew. Chem. 2020, 132, 17066–17073.
- 6M. Xuan, J. Shao, C. Gao, W. Wang, L. Dai, Q. He, Angew. Chem. Int. Ed. 2018, 57, 12463–12467; Angew. Chem. 2018, 130, 12643–12647.
- 7J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sanchez, J. Am. Chem. Soc. 2018, 140, 9317–9331.
- 8I. Ortiz-Rivera, M. Mathesh, D. A. Wilson, Acc. Chem. Res. 2018, 51, 1891–1900.
- 9H. Wang, M. Pumera, Chem. Rev. 2015, 115, 8704–8735.
- 10B. Jang, A. Hong, H. A. Kang, C. Alcantara, S. Charreyron, F. Mushtaq, E. Pellicer, R. Büchel, J. Sort, S. K. Lee, B. J. Nelson, S. Pané, ACS Nano 2017, 11, 6146–6154.
- 11W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, J. Am. Chem. Soc. 2004, 126, 13424–13431.
- 12W. Gao, A. Uygun, J. Wang, J. Am. Chem. Soc. 2012, 134, 897–900.
- 13M. Mathesh, J. Sun, F. van der Sandt, D. A. Wilson, Nanoscale 2020, 12, 22495–22501.
- 14A. Nourhani, P. E. Lammert, Phys. Rev. Lett. 2016, 116, 178302.
- 15K. Yao, M. Manjare, C. A. Barrett, B. Yang, T. T. Salguero, Y. Zhao, J. Phys. Chem. Lett. 2012, 3, 2204–2208.
- 16C. Hu, Y. Zhao, H. Cheng, Y. Wang, Z. Dong, C. Jiang, X. Zhai, L. Jiang, L. Qu, Nano Lett. 2012, 12, 5879–5884.
- 17A. Martín, B. Jurado-Sánchez, A. Escarpa, J. Wang, Small 2015, 11, 3568–3574.
- 18D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, S. Sanchez, Nano Lett. 2016, 16, 2860–2866.
- 19L. K. E. A. Abdelmohsen, M. Nijemeisland, G. M. Pawar, G.-J. A. Janssen, R. J. M. Nolte, J. C. M. van Hest, D. A. Wilson, ACS Nano 2016, 10, 2652–2660.
- 20M. Zeng, D. Huang, P. Wang, D. King, B. Peng, J. Luo, Q. Lei, L. Zhang, L. Wang, A. Shinde, M. Shuai, N. A. Clark, Z. Cheng, ACS Appl. Nano Mater. 2019, 2, 1267–1273.
- 21M. Y. Gai, J. Frueh, N. Hu, T. Y. Si, G. B. Sukhorukov, Phys. Chem. Chem. Phys. 2016, 18, 3397–3401.
- 22H. Zhang, Z. Cao, Q. Zhang, J. Xu, S. L. J. Yun, K. Liang, Z. Gu, Small 2020, 16, 2002732.
- 23K. Ariga, S. Watanabe, T. Mori, J. Takeya, NPG Asia Mater. 2018, 10, 90–106.
- 24M. B. Avinash, T. Govindaraju, Acc. Chem. Res. 2018, 51, 414–426.
- 25J. Liu, H. Zhou, W. Yang, K. Ariga, Acc. Chem. Res. 2020, 53, 644–653.
- 26K. Ariga, M. Ishii, T. Mori, Chem. Eur. J. 2020, 26, 6461–6472.
- 27K. Ariga, J. Li, J. Fei, Q. Ji, J. P. Hill, Adv. Mater. 2016, 28, 1251–1286.
- 28C. Hu, S. Pané, B. J. Nelson, Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 53–75.
10.1146/annurev-control-060117-104947 Google Scholar
- 29E. Karshalev, B. Esteban-Fernández de Ávila, J. Wang, J. Am. Chem. Soc. 2018, 140, 3810–3820.
- 30M. Mathesh, B. Luan, T. O. Akanbi, J. K. Weber, J. Liu, C. J. Barrow, R. Zhou, W. Yang, ACS Catal. 2016, 6, 4760–4768.
- 31M. Mathesh, J. Liu, C. J. Barrow, W. Yang, Chem. Eur. J. 2017, 23, 304–311.
- 32M. Mathesh, J. Liu, N. D. Nam, S. K. H. Lam, R. Zheng, C. J. Barrow, W. Yang, J. Mater. Chem. C 2013, 1, 3084–3090.
- 33J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 2007, 99, 048102.
- 34H. Qin, X. Wu, X. Xue, H. Liu, Commun. Chem. 2018, 1, 72.
- 35A. Cornish-Bowden, Principles of enzyme kinetics, Elsevier, London, 2014.
- 36S. Sengupta, K. K. Dey, H. S. Muddana, T. Tabouillot, M. E. Ibele, P. J. Butler, A. Sen, J. Am. Chem. Soc. 2013, 135, 1406–1414.
- 37A. Somasundar, S. Ghosh, F. Mohajerani, L. N. Massenburg, T. Yang, P. S. Cremer, D. Velegol, A. Sen, Nat. Nanotechnol. 2019, 14, 1129–1134.
- 38C. Marangoni, Il Nuovo Cimento (1869–1876) 1871, 5, 239–273.
10.1007/BF02718643 Google Scholar
- 39I. Ortiz-Rivera, H. Shum, A. Agrawal, A. Sen, A. C. Balazs, Proc. Natl. Acad. Sci. USA 2016, 113, 2585–2590.
- 40A. Laskar, O. E. Shklyaev, A. C. Balazs, Sci. Adv. 2018, 4, eaav1745-eaav1745.
- 41L. Chen, H. Yuan, S. Chen, C. Zheng, X. Wu, Z. Li, C. Liang, P. Dai, Q. Wang, X. Ma, X. Yan, ACS Appl. Mater. Interfaces 2021, 13, 31226–31235.
- 42Z. Li, Z. Xie, H. Lu, Y. Wang, Y. Liu, ChemistryOpen 2021, 10, 861–866.
- 43O. M. Wani, M. Safdar, N. Kinnunen, J. Janis, Chem. Eur. J. 2016, 22, 1244–1247.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.