Highly Efficient Synthesis of Poly(silylether)s: Access to Degradable Polymers from Renewable Resources
Hugo Fouilloux
PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, Paris, 75005 France
Search for more papers by this authorDr. Marie-Noelle Rager
PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, Paris, 75005 France
Search for more papers by this authorDr. Pablo Ríos
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINCA), CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
Search for more papers by this authorCorresponding Author
Dr. Salvador Conejero
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINCA), CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
Search for more papers by this authorCorresponding Author
Prof. Christophe M. Thomas
PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, Paris, 75005 France
Search for more papers by this authorHugo Fouilloux
PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, Paris, 75005 France
Search for more papers by this authorDr. Marie-Noelle Rager
PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, Paris, 75005 France
Search for more papers by this authorDr. Pablo Ríos
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINCA), CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
Search for more papers by this authorCorresponding Author
Dr. Salvador Conejero
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINCA), CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
Search for more papers by this authorCorresponding Author
Prof. Christophe M. Thomas
PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, Paris, 75005 France
Search for more papers by this authorAbstract
The design of new materials with tunable properties and intrinsic recyclability, derived from biomass under mild conditions, stands as a gold standard in polymer chemistry. Reported herein are platinum complexes which catalyze the formation of poly(silylether)s (PSEs) at low catalyst loadings. These polymers are directly obtained from dual-functional biobased building blocks such as 5-hydroxymethylfurfural (HMF) or vanillin, coupled with various dihydrosilanes. Access to different types of copolymer architectures (statistical or alternating) is highlighted by several synthetic strategies. The materials obtained were then characterized as low Tg materials (ranging from −60 to 29 °C), stable upon heating (T−5% up to 301 °C) and resistant towards uncatalyzed methanolysis. Additionally, quantitative chemical recycling of several PSEs could be triggered by acid-catalyzed hydrolysis or methanolysis. These results emphasize the interest of biobased poly(silylether)s as sustainable materials with high recycling potential.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113443-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Fouilloux, C. M. Thomas, Macromol. Rapid Commun. 2021, 42, 2000530.
- 2
- 2aM. A. Hillmyer, Science 2017, 358, 868–870;
- 2bM. Poliakoff, P. Licence, Nature 2007, 450, 810–812;
- 2cA. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484–489;
- 2dF. Seniha Güner, Y. Yağcı, A. Tuncer Erciyes, Prog. Polym. Sci. 2006, 31, 633–670;
- 2eJ. F. Jenck, F. Agterberg, M. J. Droescher, Green Chem. 2004, 6, 544–556;
- 2fA. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411–2502;
- 2gJ. H. Clark, F. E. I. Deswarte in Introduction to chemicals from biomass, Wiley, Chichester, 2015;
10.1002/9781118714478 Google Scholar
- 2hP. Y. Dapsens, C. Mondellu, J. Pérez-Ramírez, ACS Catal. 2012, 2, 1487–1499;
- 2iP. Gallezot, Chem. Soc. Rev. 2012, 41, 1538–1558;
- 2jF. Cherubini, A. H. Strømman, Biofuels Bioprod. Biorefin. 2011, 5, 548–561;
- 2kR. A. Sheldon, Green Chem. 2014, 16, 950–963.
- 3
- 3aP. B. Weisz, Phys. Today 2004, 57, 47–52;
- 3bC. Williams, M. Hillmyer, Polym. Rev. 2008, 48, 1–10;
- 3cM. J.-L. Tschan, E. Brule, P. Haquette, C. M. Thomas, Polym. Chem. 2012, 3, 836–851.
- 4
- 4aM. Hong, E. Y.-X. Chen, Green Chem. 2017, 19, 3692–3706;
- 4bG. W. Coates, Y. D. Y. L. Getzler, Nat. Rev. Mater. 2020, 5, 501–516.
- 5
- 5aJ. K. Paulasaari, W. P. Weber, Macromolecules 1998, 31, 7105–7107;
- 5bJ. Cella, S. Rubinsztajn, Macromolecules 2008, 41, 6965–6971;
- 5cC. Cheng, A. Watts, M. A. Hillmyer, J. F. Hartwig, Angew. Chem. Int. Ed. 2016, 55, 11872–11876; Angew. Chem. 2016, 128, 12051–12055;
- 5dP. Shieh, H. V.-T. Nguyen, J. A. Johnson, Nat. Chem. 2019, 11, 1124–1132;
- 5eP. Shieh, W. Zhang, K. E. L. Husted, S. L. Kristufek, B. Xiong, D. J. Lundberg, J. Lem, D. Veysset, Y. Sun, K. A. Nelson, D. L. Plata, J. A. Johnson, Nature 2020, 583, 542–547.
- 6J. E. Curry, J. D. Byrd, J. Appl. Polym. Sci. 1965, 9, 295–311.
- 7Y. Zhang, Z. Zhu, Z. Bai, W. Jiang, F. Liu, J. Tang, RSC Adv. 2017, 7, 16616–16622.
- 8
- 8aY. Li, M. Seino, Y. Kawakami, Macromolecules 2000, 33, 5311–5314;
- 8bX.-Q. Wang, X.-Y. Zhai, B. Wu, Y.-Q. Bai, Y.-G. Zhou, ACS Macro Lett. 2020, 9, 969–973.
- 9X. Chen, L. Fang, X. Chen, J. Zhou, J. Wang, J. Sun, Q. Fang, ACS Sustainable Chem. Eng. 2018, 6, 13518–13523.
- 10
- 10aJ. M. Mabry, J. K. Paulasaari, W. P. Weber, Polymer 2000, 41, 4423–4428;
- 10bS. B. Yun, Y. T. Park, Bull. Korean Chem. Soc. 2008, 29, 2373–2378;
- 10cI. K. Jung, Y. T. Park, Bull. Korean Chem. Soc. 2011, 32, 1303–1309;
- 10dE. A. Jung, Y. T. Park, Bull. Korean Chem. Soc. 2012, 33, 2031–2036.
- 11S. Gao, Y. Liu, S. Feng, Z. Lu, J. Mater. Chem. A 2019, 7, 17498–17504.
- 12
- 12aM. Wang, Q. Zhang, K. L. Wooley, Biomacromolecules 2001, 2, 1206–1213;
- 12bM. C. Parrott, J. C. Luft, J. D. Byrne, J. H. Fain, M. E. Napier, J. M. DeSimone, J. Am. Chem. Soc. 2010, 132, 17928–17932;
- 12cT. Ware, A. R. Jennings, Z. S. Bassampour, D. Simon, D. Y. Son, W. Voit, RSC Adv. 2014, 4, 39991–40002;
- 12dY. Wang, S. Fan, D. Xiao, F. Xie, W. Li, W. Zhong, X. Zhou, Cancers 2019, 11, 957;
- 12eC. M. Bunton, Z. M. Bassampour, J. M. Boothby, A. N. Smith, J. V. Rose, D. M. Nguyen, T. H. Ware, K. G. Csaky, A. R. Lippert, N. V. Tsarevsky, D. Y. Son, Macromolecules 2020, 53, 9890–9900.
- 13C. Rücker, K. Kümmerer, Chem. Rev. 2015, 115, 466–524.
- 14R. MacFarlane, E. S. Yankura, Synthesis of Regulated Structure Polyphenylether Siloxane Block Copolymers., United States Rubber Co Naugatuck CT Chemical Div., 1963.
- 15Y. Kawakami, Y. Li, Des. Monomers Polym. 2000, 3, 399–419.
- 16
- 16aC. E. Carraher Jr, G. H. Klimiuk, J. Polym. Sci. Part A 1970, 8, 973–978;
- 16bK. Nagaoka, H. Naruse, I. Shinohara, M. Watanabe, J. Polym. Sci. Polym. Lett. 1984, 22, 659–663;
- 16cD.-J. Liaw, B.-Y. Liaw, J. Polym. Sci. Part A 1999, 37, 4591–4595;
10.1002/(SICI)1099-0518(19991215)37:24<4591::AID-POLA16>3.0.CO;2-P CAS Web of Science® Google Scholar
- 16dA. M. Issam, M. Haris, J. Inorg. Organomet. Polym. 2009, 19, 454–458;
- 16eK. Drake, I. Mukherjee, K. Mirza, H.-F. Ji, Y. Wei, Macromolecules 2011, 44, 4107–4115;
- 16fK. Drake, I. Mukherjee, K. Mirza, H.-F. Ji, J.-C. Bradley, Y. Wei, Macromolecules 2013, 46, 4370–4377;
- 16gI. A. Mohammed, S. Shahabuddin, R. Khanam, R. Saidur, Polímeros 2018, 28, 406–412.
- 17
- 17aL. W. Breed, R. L. Elliott, Synthesis of Elastomers Containing Si-N Bonds in the Main Chain., Midwest Research Institute, 1963;
- 17bW. R. Dunnavant, R. A. Markle, P. B. Stickney, J. E. Curry, J. D. Byrd, J. Polym. Sci. Part A 1967, 5, 707–724;
- 17cW. R. Dunnavant, R. A. Markle, R. G. Sinclair, P. B. Stickney, J. E. Curry, J. D. Byrd, Macromolecules 1968, 1, 249–254.
- 18
- 18aM. Padmanaban, M.-A. Kakimoto, Y. Imai, J. Polym. Sci. Part A 1990, 28, 2997–3005;
- 18bS. A. Nye, S. A. Swint, J. Polym. Sci. Part A 1994, 32, 131–138;
- 18cY. Nagasaki, F. Matsukura, M. Kato, H. Aoki, T. Tokuda, Macromolecules 1996, 29, 5859–5863;
- 18dY. Liu, I. Imae, A. Makishima, Y. Kawakami, Sci. Technol. Adv. Mater. 2003, 4, 27–34.
- 19E. Sahmetlioglu, H. T. H. Nguyen, O. Nsengiyumva, E. Göktürk, S. A. Miller, ACS Macro Lett. 2016, 5, 466–470.
- 20
- 20aJ. M. Mabry, M. K. Runyon, W. P. Weber, Macromolecules 2001, 34, 7264–7268;
- 20bJ. M. Mabry, M. K. Runyon, W. P. Weber, Macromolecules 2002, 35, 2207–2211;
- 20cY. Li, Y. Kawakami, Macromolecules 1999, 32, 3540–3542;
- 20dY. Li, Y. Kawakami, Macromolecules 1999, 32, 6871–6873;
- 20eA. Purkayastha, J. B. Baruah, Appl. Organomet. Chem. 2000, 14, 477–483;
- 20fP. N. Reddy, B. P. S. Chauhan, T. Hayashi, M. Tanaka, Chem. Lett. 2000, 29, 250–251;
10.1246/cl.2000.250 Google Scholar
- 20gG. Lázaro, M. Iglesias, F. J. Fernández-Alvarez, S. Miguel, J. J. Pérez-Torrente, L. A. Oro, ChemCatChem 2013, 5, 1133–1141;
- 20hG. Lázaro, F. J. Fernández-Alvarez, M. Iglesias, C. Horna, E. Vispe, R. Sancho, F. J. Lahoz, M. Iglesias, J. J. Pérez-Torrente, L. A. Oro, Catal. Sci. Technol. 2014, 4, 62–70;
- 20iM. Zhao, W. Xie, C. Cui, Chem. Eur. J. 2014, 20, 9259–9262;
- 20jC. Lichtenberg, M. Adelhardt, M. Wörle, T. Büttner, K. Meyer, H. Grützmacher, Organometallics 2015, 34, 3079–3089;
- 20kC. Lichtenberg, L. Viciu, M. Adelhardt, J. Sutter, K. Meyer, B. de Bruin, H. Grützmacher, Angew. Chem. Int. Ed. 2015, 54, 5766–5771; Angew. Chem. 2015, 127, 5858–5863;
- 20lC. Li, X. Hua, Z. Mou, X. Liu, D. Cui, Macromol. Rapid Commun. 2017, 38, 1700590;
- 20mS. Vijjamarri, V. K. Chidara, G. Du, ACS Omega 2017, 2, 582–591;
- 20nS. Vijjamarri, M. Hull, E. Kolodka, G. Du, ChemSusChem 2018, 11, 2881–2888;
- 20oX.-Y. Zhai, S.-B. Hu, L. Shi, Y.-G. Zhou, Organometallics 2018, 37, 2342–2347;
- 20pX.-Y. Zhai, X.-Q. Wang, Y.-X. Ding, Y.-G. Zhou, Chin. Chem. Lett. 2020, 31, 1197–1200;
- 20qX.-Y. Zhai, X.-Q. Wang, Y.-G. Zhou, Eur. Polym. J. 2020, 134, 109832;
- 20rC. S. Sample, S.-H. Lee, M. W. Bates, J. M. Ren, J. Lawrence, V. Lensch, J. A. Gerbec, C. M. Bates, S. Li, C. J. Hawker, Macromolecules 2019, 52, 1993–1999;
- 20sA. F. Schneider, E. Laidley, M. A. Brook, Macromol. Chem. Phys. 2019, 220, 1800575;
- 20tY. Tao, J. Zhou, L. Fang, Y. Wang, X. Chen, X. Chen, J. Hou, J. Sun, Q. Fang, ACS Sustainable Chem. Eng. 2019, 7, 7304–7311;
- 20uL. J. Morris, M. S. Hill, M. F. Mahon, I. Manners, F. S. McMenamy, G. R. Whittell, Chem. Eur. J. 2020, 26, 2954–2966.
- 21
- 21aS. Vijjamarri, S. Streed, E. M. Serum, M. P. Sibi, G. Du, ACS Sustainable Chem. Eng. 2018, 6, 2491–2497;
- 21bC. Li, L. Wang, M. Wang, B. Liu, X. Liu, D. Cui, Angew. Chem. Int. Ed. 2019, 58, 11434–11438; Angew. Chem. 2019, 131, 11556–11560.
- 22
- 22aJ. Zhang, Y. Chen, M. A. Brook, ACS Sustainable Chem. Eng. 2014, 2, 1983–1991;
- 22bE. Feghali, G. Carrot, P. Thuéry, C. Genre, T. Cantat, Energy Environ. Sci. 2015, 8, 2734–2743;
- 22cL. L. Adduci, M. P. McLaughlin, T. A. Bender, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2014, 53, 1646–1649; Angew. Chem. 2014, 126, 1672–1675;
- 22dJ. Zhang, S. Park, S. Chang, Angew. Chem. Int. Ed. 2017, 56, 13757–13761; Angew. Chem. 2017, 129, 13945–13949.
- 23
- 23aL. N. Lewis, J. Stein, Y. Gao, R. E. Colborn, G. Hutchins, Platinum Met. Rev. 1997, 41, 66–75;
- 23bR. Y. Lukin, A. M. Kuchkaev, A. V. Sukhov, G. E. Bekmukhamedov, D. G. Yakhvarov, Polymer 2020, 12, 2174.
- 24
- 24aC. Robert, F. de Montigny, C. M. Thomas, Nat. Commun. 2011, 2, 586;
- 24bS. K. Raman, E. Brulé, M. J.-L. Tschan, C. M. Thomas, Chem. Commun. 2014, 50, 13773–13776;
- 24cC. Robert, T. E. Schmid, V. Richard, P. Haquette, S. K. Raman, M.-N. Rager, R. M. Gauvin, Y. Morin, X. Trivelli, V. Guérineau, I. del Rosal, L. Maron, C. M. Thomas, J. Am. Chem. Soc. 2017, 139, 6217–6225;
- 24dJ. Kiriratnikom, C. Robert, V. Guérineau, V. Venditto, C. M. Thomas, Front. Chem. 2019, 7, 301;
- 24eP. Marin, M. J.-L. Tschan, F. Isnard, C. Robert, P. Haquette, X. Trivelli, L.-M. Chamoreau, V. Guérineau, I. del Rosal, L. Maron, V. Venditto, C. M. Thomas, Angew. Chem. Int. Ed. 2019, 58, 12585–12589; Angew. Chem. 2019, 131, 12715–12719;
- 24fP. Marin, M. J.-L. Tschan, P. Haquette, T. Roisnel, I. del Rosal, L. Maron, C. M. Thomas, Eur. Polym. J. 2019, 120, 109208;
- 24gH. Fouilloux, W. Qiang, C. Robert, V. Placet, C. M. Thomas, Angew. Chem. Int. Ed. 2021, 60, 19374–19382; Angew. Chem. 2021, 133, 19523–19531.
- 25
- 25aO. Rivada-Wheelaghan, B. Donnadieu, C. Maya, S. Conejero, Chem. Eur. J. 2010, 16, 10323–10326;
- 25bM. Roselló-Merino, J. López-Serrano, S. Conejero, J. Am. Chem. Soc. 2013, 135, 10910–10913;
- 25cM. Roselló-Merino, R. J. Rama, J. Díez, S. Conejero, Chem. Commun. 2016, 52, 8389–8392;
- 25dP. Ríos, M. Roselló-Merino, O. Rivada-Wheelaghan, J. Borge, J. López-Serrano, S. Conejero, Chem. Commun. 2018, 54, 619–622;
- 25eP. Ríos, J. Díez, J. López-Serrano, A. Rodríguez, S. Conejero, Chem. Eur. J. 2016, 22, 16791–16795;
- 25fP. Ríos, H. Fouilloux, P. Vidossich, J. Díez, A. Lledós, S. Conejero, Angew. Chem. Int. Ed. 2018, 57, 3217–3221; Angew. Chem. 2018, 130, 3271–3275.
- 26M. Lersch, M. Tilset, Chem. Rev. 2005, 105, 2471–2526.
- 27A. Sevy, E. Tieu, M. D. Morse, J. Chem. Phys. 2018, 149, 174307.
- 28M. P. Pandey, C. S. Kim, Chem. Eng. Technol. 2011, 34, 29–41.
- 29
- 29aX. L. Luo, R. H. Crabtree, J. Am. Chem. Soc. 1989, 111, 2527–2535;
- 29bM. Iglesias, F. J. Fernández-Alvarez, L. A. Oro, Coord. Chem. Rev. 2019, 386, 240–266.
- 30D. J. Saxon, A. M. Luke, H. Sajjad, W. B. Tolman, T. M. Reineke, Prog. Polym. Sci. 2020, 101, 101196.
- 31Y. Li, Y. Kawakami, Macromolecules 1999, 32, 8768–8773.
- 32L. Guillaume, A. Marshall, N. Niessen, P. Ni, R. M. Gauvin, C. M. Thomas, Green Chem. 2021, 23, 6931–6935.
- 33M. Jeon, J. Han, J. Park, ACS Catal. 2012, 2, 1539–1549.
- 34
- 34aA. G. Schafer, J. M. Wieting, A. E. Mattson, Org. Lett. 2011, 13, 5228–5231;
- 34bA. M. Hardman-Baldwin, A. E. Mattson, ChemSusChem 2014, 7, 3275–3278.
- 35K. Hirabayashi, A. Mori, J. Kawashima, M. Suguro, Y. Nishihara, T. Hiyama, J. Org. Chem. 2000, 65, 5342–5349.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.