Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuous-Flow
Junqi Su
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJia-Nan Mo
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorDr. Xiangyang Chen
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorAlexander Umanzor
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorZheng Zhang
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorProf. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Jiannan Zhao
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJunqi Su
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJia-Nan Mo
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorDr. Xiangyang Chen
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorAlexander Umanzor
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorZheng Zhang
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorProf. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Jiannan Zhao
Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorAbstract
Phosphine-mediated deoxygenative nucleophilic substitutions, such as the Mitsunobu reaction, are of great importance in organic synthesis. However, the conventional protocols require stoichiometric oxidants to trigger the formation of the oxyphosphonium intermediates for the subsequent nucleophilic additions. Through dual catalysis of photoredox and cobaloxime, we realized a radical strategy for the catalytic formation of acyloxyphosphonium ions that enables direct amidation. The deoxygenative protocol exhibits a broad scope and has been used in the late-stage amidation of drug molecules. In addition to batch reactions, a continuous-flow reactor was developed, enabling rapid peptide synthesis on gram scale. The successful assembly of a tetrapeptide on the solid support further demonstrated the versatility of this photocatalytic system. Moreover, experimental and computational studies are consistent with the hypothesis of acyloxyphosphonium ions being formed as the key intermediates.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202112668-sup-0001-misc_information.pdf11 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. C. Kumara Swamy, N. N. Bhuvan Kumar, E. Balaraman, K. V. P. Pavan Kumar, Chem. Rev. 2009, 109, 2551–2651;
- 1bJ. M. Lipshultz, G. Li, A. T. Radosevich, J. Am. Chem. Soc. 2021, 143, 1699–1721.
- 2
- 2aO. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380–2382;
- 2bR. H. Beddoe, K. G. Andrews, V. Magné, J. D. Cuthbertson, J. Saska, A. L. Shannon-Little, S. E. Shanahan, H. F. Sneddon, R. M. Denton, Science 2019, 365, 910–914.
- 3R. Appel, Angew. Chem. Int. Ed. Engl. 1975, 14, 801–811; Angew. Chem. 1975, 87, 863–874.
- 4
- 4aD. F. J. Hamstra, D. C. Lenstra, T. J. Koenders, F. P. J. T. Rutjes, J. Mecinović, Org. Biomol. Chem. 2017, 15, 6426–6432;
- 4bJ. M. Lipshultz, A. T. Radosevich, J. Am. Chem. Soc. 2021, 143, 14487–14494.
- 5B. Castro, J. R. Dormoy, G. Evin, C. Selve, Tetrahedron Lett. 1975, 16, 1219–1222.
- 6F. Albeiicio, R. Chinchilla, D. J. Dodsworth, C. Nájera, Org. Prep. Proced. Int. 2001, 33, 203–303.
- 7For selected reviews, see:
- 7aJ. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102–113;
- 7bC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 7cK. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035–10074.
- 8For reviews, see:
- 8aJ. A. Rossi-Ashton, A. K. Clarke, W. P. Unsworth, R. J. K. Taylor, ACS Catal. 2020, 10, 7250–7261;
- 8bX. Shao, Y. Zheng, V. Ramadoss, L. Tian, Y. Wang, Org. Biomol. Chem. 2020, 18, 5994–6005.
- 9For selected examples, see:
- 9aE. E. Stache, A. B. Ertel, T. Rovis, A. G. Doyle, ACS Catal. 2018, 8, 11134–11139;
- 9bM. Zhang, J. Xie, C. Zhu, Nat. Commun. 2018, 9, 3517;
- 9cM. Zhang, X.-A. Yuan, C. Zhu, J. Xie, Angew. Chem. Int. Ed. 2019, 58, 312–316; Angew. Chem. 2019, 131, 318–322;
- 9dH. Jiang, G. Mao, H. Wu, Q. An, M. Zuo, W. Guo, C. Xu, Z. Sun, W. Chu, Green Chem. 2019, 21, 5368–5373.
- 10
- 10aH. Maeda, T. Koide, T. Maki, H. Ohmori, Chem. Pharm. Bull. 1995, 43, 1076–1080;
- 10bZ. Xu, Y. Zheng, Z. Wang, X. Shao, L. Tian, Y. Wang, Chem. Commun. 2019, 55, 15089–15092.
- 11
- 11aD. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green Chem. 2007, 9, 411–420;
- 11bS. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479;
- 11cD. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443–4458.
- 12
- 12aV. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471–479;
- 12bM. T. Sabatini, L. T. Boulton, H. F. Sneddon, T. D. Sheppard, Nat. Catal. 2019, 2, 10–17;
- 12cH. Noda, M. Furutachi, Y. Asada, M. Shibasaki, N. Kumagai, Nat. Chem. 2017, 9, 571–577;
- 12dW. Muramatsu, H. Yamamoto, J. Am. Chem. Soc. 2021, 143, 6792–6797.
- 13
- 13aA. El-Faham, F. Albericio, Chem. Rev. 2011, 111, 6557–6602;
- 13bJ. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res. Dev. 2016, 20, 140–177.
- 14
- 14aG. Pandey, S. Koley, R. Talukdar, P. K. Sahani, Org. Lett. 2018, 20, 5861–5865;
- 14bJ. A. Forni, N. Micic, T. U. Connell, G. Weragoda, A. Polyzos, Angew. Chem. Int. Ed. 2020, 59, 18646–18654; Angew. Chem. 2020, 132, 18805–18813;
- 14cY.-Q. Miao, J.-X. Kang, Y.-N. Ma, X. Chen, Green Chem. 2021, 23, 3595–3599;
- 14dW. Lee, H. J. Jeon, H. Jung, D. Kim, S. Seo, S. Chang, Chem 2021, 7, 495–508.
- 15J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan, A. Lei, Angew. Chem. Int. Ed. 2014, 53, 502–506; Angew. Chem. 2014, 126, 512–516.
- 16
- 16aH. Liu, L. Zhao, Y. Yuan, Z. Xu, K. Chen, S. Qiu, H. Tan, ACS Catal. 2016, 6, 1732–1736;
- 16bW. Song, K. Dong, M. Li, Org. Lett. 2020, 22, 371–375.
- 17N. Alandini, L. Buzzetti, G. Favi, T. Schulte, L. Candish, K. D. Collins, P. Melchiorre, Angew. Chem. Int. Ed. 2020, 59, 5248–5253; Angew. Chem. 2020, 132, 5286–5291.
- 18A. K. Mishra, G. Parvari, S. K. Santra, A. Bazylevich, O. Dorfman, J. Rahamim, Y. Eichen, A. M. Szpilman, Angew. Chem. Int. Ed. 2021, 60, 12406–12412; Angew. Chem. 2021, 133, 12514–12520.
- 19
- 19aT. Mukaiyama, Angew. Chem. Int. Ed. Engl. 1976, 15, 94–103; Angew. Chem. 1976, 88, 111–120;
- 19bL. S. Liebeskind, P. Gangireddy, M. G. Lindale, J. Am. Chem. Soc. 2016, 138, 6715–6718;
- 19cHandoko, S. Satishkumar, N. R. Panigrahi, P. S. Arora, J. Am. Chem. Soc. 2019, 141, 15977–15985.
- 20
- 20aG. N. Schrauzer, Acc. Chem. Res. 1968, 1, 97–103;
- 20bB. Chen, L.-Z. Wu, C.-H. Tung, Acc. Chem. Res. 2018, 51, 2512–2523.
- 21G. W. Anderson, F. M. Callahan, J. Am. Chem. Soc. 1960, 82, 3359–3363.
- 22J. R. Docherty, Br. J. Pharmacol. 2008, 154, 606–622.
- 23W. F. Hahne, R. T. Jensen, G. F. Lemp, J. D. Gardner, Proc. Natl. Acad. Sci. USA 1981, 78, 6304–6308.
- 24J. Sakaguchi, H. Nishino, N. Ogawa, Y. Iwanaga, S. Yasuda, H. Kato, Y. Ito, Chem. Pharm. Bull. 1992, 40, 202–211.
- 25For selected reviews, see:
- 25aZ. J. Garlets, J. D. Nguyen, C. R. J. Stephenson, Isr. J. Chem. 2014, 54, 351–360;
- 25bD. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noel, Chem. Rev. 2016, 116, 10276–10341.
- 26R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 4140–4143; Angew. Chem. 2012, 124, 4216–4219.
- 27Benzoic acid and PPh3 were recovered in 80.3 % and 73.1 % yield, respectively.
- 28G. Pandey, D. Pooranchand, U. T. Bhalerao, Tetrahedron 1991, 47, 1745–1752.
- 29M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712–5719.
- 30
- 30aH. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723;
- 30bH. Neugebauer, F. Bohle, M. Bursch, A. Hansen, S. Grimme, J. Phys. Chem. A 2020, 124, 7166–7176.
- 31P. Du, J. Schneider, G. Luo, W. W. Brennessel, R. Eisenberg, Inorg. Chem. 2009, 48, 4952–4962.
- 32J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Acc. Chem. Res. 2009, 42, 1995–2004.
- 33The evolution of H2 was confirmed by GC analysis of the gas phase in the headspace of the reaction vessel. See SI for details.
- 34Preliminary studies of other nucleophiles showed promising outcomes, when we replaced the amine with alcohol, thiol and 1,3-cyclohexanedione. See Table S4 for details.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.