Taming the Lewis Superacidity of Non-Planar Boranes: C−H Bond Activation and Non-Classical Binding Modes at Boron
Arnaud Osi
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorDamien Mahaut
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorDr. Nikolay Tumanov
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorDr. Luca Fusaro
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorProf. Dr. Johan Wouters
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorProf. Dr. Benoît Champagne
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorCorresponding Author
Dr. Aurélien Chardon
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorCorresponding Author
Prof. Dr. Guillaume Berionni
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorArnaud Osi
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorDamien Mahaut
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorDr. Nikolay Tumanov
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorDr. Luca Fusaro
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorProf. Dr. Johan Wouters
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorProf. Dr. Benoît Champagne
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorCorresponding Author
Dr. Aurélien Chardon
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorCorresponding Author
Prof. Dr. Guillaume Berionni
Chemistry Department—Namur Institute of Structured Matter—, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
Search for more papers by this authorAbstract
The rational design of a geometrically constrained boron Lewis superacid featuring exceptional structure and reactivity is disclosed. It enabled the formation of non-classical electron deficient B−H−B type of bonding, which was supported by spectroscopic and structural parameters as well as computational studies. Taming the pyramidal Lewis acid electrophilicity through weak coordinating anion dissociation enabled a series of highly challenging chemical transformations, such as Csp2−H and Csp3−H activation under a frustrated Lewis pair regime and the cleavage of Csp3−Si bonds. The demonstration of such rich chemical behaviour and flexibility on a single molecular compound makes it a unique mediator of chemical transformations generally restricted to transition metals.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202112342-sup-0001-cif.zip4.4 MB | Supporting Information |
ange202112342-sup-0001-misc_information.pdf7.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. N. Lewis, Valence and the Structure of Atoms and Molecules in The Chemical Catalog Company, Book Department, New York, 1923.
- 2
- 2aW. E. Piers, Adv. Organomet. Chem. 2005, 52, 1;
- 2bW. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345;
- 2cJ. L. Carden, A. Dasgupta, R. L. Melen, Chem. Soc. Rev. 2020, 49, 1706.
- 3
- 3aD. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46; Angew. Chem. 2010, 122, 50;
- 3bG. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124.
- 4For recent reviews, see:
- 4aM.-A. Légaré, C. Pranckevicius, H. Braunschweig, Chem. Rev. 2019, 119, 8231;
- 4bF. Jäkle, Chem. Rev. 2010, 110, 3985;
- 4cA. Lorbach, A. Hübner, M. Wagner, Dalton Trans. 2012, 41, 6048;
- 4dM. Li, J. S. Fossey, T. D. James, Boron: Sensing, Synthesis and Supramolecular Self-assembly, RSC, London, 2015.
10.1039/9781782622123 Google Scholar
- 5
- 5aL. A. Mück, A. Y. Timoshkin, G. Frenking, Inorg. Chem. 2012, 51, 640;
- 5bE. I. Davydova, T. N. Sevastianove, A. N. Timoshkin, Coord. Chem. Rev. 2015, 297, 91;
- 5cA. Y. Timoshkin, K. Morokuma, Phys. Chem. Chem. Phys. 2012, 14, 14911;
- 5dL. A. Mück, A. Y. Timoshkin, M. von Hopffgarten, G. Frenking, J. Am. Chem. Soc. 2009, 131, 3942;
- 5eT. M. Gilbert, Dalton Trans. 2012, 41, 9046;
- 5fJ. M. Oliva-Enrich, I. Alkorta, J. Elguero, Molecules 2020, 25, 1042;
- 5gD. Mahaut, A. Chardon, L. Mineur, G. Berionni, B. Champagne, ChemPhysChem 2021, 22, 1958–1966.
- 6
- 6aG. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2004, 33, 210;
- 6bA. Chardon, A. Osi, D. Mahaut, A. Ben Saida, G. Berionni, Synlett 2020, 17, 1639.
- 7
- 7aA. Ben Saida, A. Chardon, A. Osi, N. Tumanov, J. Wouters, A. I. Adjieufack, B. Champagne, G. Berionni, Angew. Chem. Int. Ed. 2019, 58, 16889; Angew. Chem. 2019, 131, 17045;
- 7bY. V. Vishnevskiy, M. A. Abaev, A. N. Rykov, M. E. Gurskii, P. A. Belyakov, S. Y. Erdyakov, Y. N. Bubnov, N. W. Mitzel, Chem. Eur. J. 2012, 18, 10585. For recent contributions in the field of non-VSEPR main-group Lewis acids, see:
- 7cF. Ebner, H. Wadepohl, L. Greb, J. Am. Chem. Soc. 2019, 141, 18009;
- 7dF. Ebner, L. Greb, Chem 2021, 7, 2151;
- 7eM. B. Kindervater, K. M. Marczenko, U. Werner-Zwanziger, S. S. Chitnis, Angew. Chem. Int. Ed. 2019, 58, 7850; Angew. Chem. 2019, 131, 7932;
- 7fK. M. Marczenko, J. A. Zurakowski, M. B. Kindervater, S. Jee, T. Hynes, N. Roberts, S. Park, U. Werner-Zwanziger, M. Lumsden, D. N. Langelaan, S. S. Chitnis, Chem. Eur. J. 2019, 25, 16414;
- 7gM. K. Mondal, L. Zhang, Z. Feng, S. Tang, R. Feng, Y. Zhao, G. Tan, H. Ruan, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 15829; Angew. Chem. 2019, 131, 15976.
- 8A. Chardon, A. Osi, D. Mahaut, T.-H. Doan, N. Tumanov, L. Fusaro, J. Wouters, B. Champagne, G. Berionni, Angew. Chem. Int. Ed. 2020, 59, 12402; Angew. Chem. 2020, 132, 12502.
- 9N. Trinajstić, Tetrahedron Lett. 1968, 9, 1529.
10.1016/S0040-4039(01)98993-2 Google Scholar
- 10H. Großekappenberg, M. Reißmann, M. Schmidtmann, T. Müller, Organometallics 2015, 34, 4952–4958.
- 11Deposition Numbers 2094921, 2094922, 2094923, 2094924, 2094925, 2094926, 2094927, 2094928, 2094929, 2094930, 2094931, 2094932, 2094933, 2104326, 2104327, and 2095204 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 12
- 12aI. M. Riddlestone, A. Kraft, J. Schaefer, I. Krossing, Angew. Chem. Int. Ed. 2018, 57, 13982; Angew. Chem. 2018, 130, 14178;
- 12bJ. Y. Corey, J. Am. Chem. Soc. 1975, 97, 3237.
- 13H. Kawai, T. Takeda, K. Fujiwara, T. Suzuki, J. Am. Chem. Soc. 2005, 127, 12172.
- 14B. Inés, M. Patil, J. Carreras, R. Goddard, W. Thiel, M. Alcarazo, Angew. Chem. Int. Ed. 2011, 50, 8400; Angew. Chem. 2011, 123, 8550.
- 15
- 15aQ. Wu, A. Roy, G. Wang, E. Irran, H. F. T. Klare, M. Oestreich, Angew. Chem. Int. Ed. 2020, 59, 10523; Angew. Chem. 2020, 132, 10609;
- 15bT. Müller, Angew. Chem. Int. Ed. 2001, 40, 3033;
10.1002/1521-3773(20010817)40:16<3033::AID-ANIE3033>3.0.CO;2-O CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 3123.
- 16D. G. Gusev, O. V. Ozerov, Chem. Eur. J. 2010, 16, 634.
- 17
- 17aV. Y. Lee, Russ. Chem. Rev. 2019, 88, 351;
- 17bH. F. T. Klare, L. Albers, L. Süße, S. Keess, T. Müller, M. Oestreich, Chem. Rev. 2021, 121, 5889.
- 18C. R. Wade, A. E. J. Broomsgrove, S. Aldridge, F. P. Gabbai, Chem. Rev. 2010, 110, 3958.
- 19C. Bonnier, W. E. Piers, A. A. Ali, A. Thompson, M. Parvez, Organometallics 2009, 28, 4845.
- 20
- 20aU. Mayer, V. Gutmann, W. Gerger, Monatsh. Chem. 1975, 106, 1235;
- 20bM. A. Beckett, G. C. Strickland, J. R. Holland, K. A. Sukumar Varma, Polymer 1996, 37, 4629.
- 21I. B. Sivaev, V. I. Bregadze, Coord. Chem. Rev. 2014, 270, 75.
- 22L. Greb, Chem. Eur. J. 2018, 24, 17881.
- 23
- 23aS. A. Iqbal, J. Pahl, K. Yuan, M. J. Ingleson, Chem. Soc. Rev. 2020, 49, 4564;
- 23bA. Ros, R. Fernández, J. M. Lassaletta, Chem. Soc. Rev. 2014, 43, 3229.
- 24
- 24aV. Bagutski, A. Del Grosso, J. A. Carrillo, J. A. Cade, A. Ian, M. D. Helm, J. R. Lawson, P. J. Singleton, S. A. Solomon, T. Marcelli, M. J. Ingleson, J. Am. Chem. Soc. 2013, 135, 474;
- 24bA. Del Grosso, J. A. Carrillo, M. J. Ingleson, Chem. Commun. 2015, 51, 2878.
- 25M.-A. Légaré, M.-A. Courtemanche, E. Rochette, F.-G. Fontaine, Science 2015, 349, 513.
- 26G. Berionni, B. Maji, P. Knochel, H. Mayr, Chem. Sci. 2012, 3, 878.
- 27For an example of C−H fluorination of unactivated arenes under superacidic conditions, see: T. Shamma, H. Buchholz, G. K. Surya Prakash, G. A. Olah, Isr. J. Chem. 1999, 39, 207.
- 28
- 28aE. Rochette, M. A. Courtemanche, F. G. Fontaine, Chem. Eur. J. 2017, 23, 3567;
- 28bD.-Q. Chen, G. Kehr, C. G. Daniliuc, M. Bursch, S. Grimme, G. Erker, Chem. Eur. J. 2019, 25, 4723.
- 29Y. Ma, S.-J. Lou, Z. Hou, Chem. Soc. Rev. 2021, 50, 1945.
- 30
- 30aQ. Wu, Z.-W. Qu, L. Omann, E. Irran, H. F. T. Klare, M. Oestreich, Angew. Chem. Int. Ed. 2018, 57, 9176; Angew. Chem. 2018, 130, 9317; For a recent method for the cleavage of bonds Si-C(sp3) Bonds with hypervalent iodine reagents, see;
- 30bK. Matsuoka, N. Komami, M. Kojima, T. Mita, K. Suzuki, S. Maeda, T. Yoshino, S. Matsunaga, J. Am. Chem. Soc. 2021, 143, 103.
- 31Q. Wu, E. Irran, R. Müller, M. Kaupp, H. F. T. Klare, M. Oestreich, Science 2019, 365, 168.
- 32A. Di Saverio, F. Focante, I. Camurati, L. Resconi, T. Beringhelli, G. D'Alfonso, D. Donghi, D. Maggioni, P. Mercandelli, A. Sironi, Inorg. Chem. 2005, 44, 5030.
- 33D. Neculai, H. W. Roesky, A. M. Neculai, J. Magull, B. Walfort, D. Stalke, Angew. Chem. Int. Ed. 2002, 41, 4294;
10.1002/1521-3773(20021115)41:22<4294::AID-ANIE4294>3.0.CO;2-W CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 4470.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.