Transition-Metal-Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation
Trevor W. Butcher
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorWilli M. Amberg
Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zϋrich, 8093 Zϋrich, Switzerland
Search for more papers by this authorCorresponding Author
Prof. John F. Hartwig
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorTrevor W. Butcher
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorWilli M. Amberg
Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zϋrich, 8093 Zϋrich, Switzerland
Search for more papers by this authorCorresponding Author
Prof. John F. Hartwig
Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720 USA
Search for more papers by this authorAbstract
Alkyl fluorides modulate the conformation, lipophilicity, metabolic stability, and pKa of compounds containing aliphatic motifs and, therefore, have been valuable for medicinal chemistry. Despite significant research in organofluorine chemistry, the synthesis of alkyl fluorides, especially chiral alkyl fluorides, remains a challenge. Most commonly, alkyl fluorides are prepared by the formation of C−F bonds (fluorination), and numerous strategies for nucleophilic, electrophilic, and radical fluorination have been reported in recent years. Although strategies to access alkyl fluorides by C−C bond formation (monofluoroalkylation) are inherently convergent and complexity-generating, they have been studied less than methods based on fluorination. This Review provides an overview of recent developments in the synthesis of chiral (enantioenriched or racemic) secondary and tertiary alkyl fluorides by monofluoroalkylation catalyzed by transition-metal complexes. We expect this contribution will illuminate the potential of monofluoroalkylations to simplify the synthesis of complex alkyl fluorides and suggest further research directions in this growing field.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aY. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422–518;
- 1bW. Zhu, J. Wang, S. Wang, Z. Gu, J. L. Aceña, K. Izawa, H. Liu, V. A. Soloshonok, J. Fluorine Chem. 2014, 167, 37–54;
- 1cY. Yu, A. Liu, G. Dhawan, H. Mei, W. Zhang, K. Izawa, V. A. Soloshonok, J. Han, Chin. Chem. Lett. 2021, https://doi.org/10.1016/j.cclet.2021.05.042.
- 2
- 2aT. Fujiwara, D. O'Hagan, J. Fluorine Chem. 2014, 167, 16–29;
- 2bP. Jeschke, ChemBioChem 2004, 5, 570–589;
- 2cQ. Wang, H. Song, Q. Wang, Chin. Chem. Lett. 2021, https://doi.org/10.1016/j.cclet.2021.07.064;
- 2dP. Jeschke, in Organofluorine Chemistry, Wiley-VCH, Weinheim, 2021, pp. 363–395.
- 3D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308–319.
- 4
- 4aS. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330;
- 4bE. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315–8359;
- 4cN. A. Meanwell, J. Med. Chem. 2011, 54, 2529–2591;
- 4dR. Hevey, Chem. Eur. J. 2021, 27, 2240–2253;
- 4eR. J. Glyn, G. Pattison, J. Med. Chem. 2021, 64, 10246–10259.
- 5F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756.
- 6
- 6aP. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev. 2015, 115, 9073–9174;
- 6bJ. Wu, Tetrahedron Lett. 2014, 55, 4289–4294;
- 6cR. Szpera, D. F. J. Moseley, L. B. Smith, A. J. Sterling, V. Gouverneur, Angew. Chem. Int. Ed. 2019, 58, 14824–14848; Angew. Chem. 2019, 131, 14966–14991.
- 7N. Chuanfa, Z. Lingui, H. Jinbo, Acta Chim. Sin. 2015, 73, 90–115.
- 8D. Cahard, V. Bizet, Chem. Soc. Rev. 2014, 43, 135–147.
- 9
- 9aM. Reichel, K. Karaghiosoff, Angew. Chem. Int. Ed. 2020, 59, 12268–12281; Angew. Chem. 2020, 132, 12364–12377;
- 9bX. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826–870.
- 10F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827–856.
- 11
- 11aY. Zhao, B. Gao, C. Ni, J. Hu, Org. Lett. 2012, 14, 6080–6083;
- 11bY. Zhao, C. Ni, F. Jiang, B. Gao, X. Shen, J. Hu, ACS Catal. 2013, 3, 631–634;
- 11cY.-M. Su, G.-S. Feng, Z.-Y. Wang, Q. Lan, X.-S. Wang, Angew. Chem. Int. Ed. 2015, 54, 6003–6007; Angew. Chem. 2015, 127, 6101–6105.
- 12C. Guo, X. Yue, F.-L. Qing, Synthesis 2010, 1837–1844.
- 13T. Xia, L. He, Y. A. Liu, J. F. Hartwig, X. Liao, Org. Lett. 2017, 19, 2610–2613.
- 14
- 14aJ. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 14726–14727;
- 14bF. O. Arp, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 10482–10483;
- 14cS. Lou, G. C. Fu, J. Am. Chem. Soc. 2010, 132, 1264–1266;
- 14dJ. T. Binder, C. J. Cordier, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 17003–17006.
- 15A. Tarui, S. Kondo, K. Sato, M. Omote, H. Minami, Y. Miwa, A. Ando, Tetrahedron 2013, 69, 1559–1565.
- 16A. Tarui, E. Miyata, A. Tanaka, K. Sato, M. Omote, A. Ando, Synlett 2015, 26, 55–58.
- 17Y. Liang, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 5520–5524.
- 18X. Jiang, S. Sakthivel, K. Kulbitski, G. Nisnevich, M. Gandelman, J. Am. Chem. Soc. 2014, 136, 9548–9551.
- 19X. Jiang, M. Gandelman, J. Am. Chem. Soc. 2015, 137, 2542–2547.
- 20S. Singh, R. B. Sunoj, J. Phys. Chem. A 2019, 123, 6701–6710.
- 21
- 21aL. M. Guard, M. Mohadjer Beromi, G. W. Brudvig, N. Hazari, D. J. Vinyard, Angew. Chem. Int. Ed. 2015, 54, 13352–13356; Angew. Chem. 2015, 127, 13550–13554;
- 21bC.-Y. Lin, P. P. Power, Chem. Soc. Rev. 2017, 46, 5347–5399;
- 21cM. Mohadjer Beromi, A. Nova, D. Balcells, A. M. Brasacchio, G. W. Brudvig, L. M. Guard, N. Hazari, D. J. Vinyard, J. Am. Chem. Soc. 2017, 139, 922–936.
- 22H. Wang, C.-F. Liu, Z. Song, M. Yuan, Y. A. Ho, O. Gutierrez, M. J. Koh, ACS Catal. 2020, 10, 4451–4459.
- 23Y. Wu, H.-R. Zhang, Y.-X. Cao, Q. Lan, X.-S. Wang, Org. Lett. 2016, 18, 5564–5567.
- 24J. Liang, J. Han, J. Wu, P. Wu, J. Hu, F. Hu, F. Wu, Org. Lett. 2019, 21, 6844–6849.
- 25J. Sheng, H.-Q. Ni, G. Liu, Y. Li, X.-S. Wang, Org. Lett. 2017, 19, 4480–4483.
- 26J. Sheng, H.-Q. Ni, H.-R. Zhang, K.-F. Zhang, Y.-N. Wang, X.-S. Wang, Angew. Chem. Int. Ed. 2018, 57, 7634–7639; Angew. Chem. 2018, 130, 7760–7765.
- 27J. Sheng, H.-Q. Ni, S.-X. Ni, Y. He, R. Cui, G.-X. Liao, K.-J. Bian, B.-B. Wu, X.-S. Wang, Angew. Chem. Int. Ed. 2021, 60, 15020–15027; Angew. Chem. 2021, 133, 15147–15154.
- 28R. Cui, J. Sheng, B.-B. Wu, D.-D. Hu, H.-Q. Zheng, X.-S. Wang, Chem. Commun. 2021, 57, 9084–9087.
- 29A. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev. 2015, 115, 9587–9652.
- 30
- 30aJ. Mao, F. Liu, M. Wang, L. Wu, B. Zheng, S. Liu, J. Zhong, Q. Bian, P. J. Walsh, J. Am. Chem. Soc. 2014, 136, 17662–17668;
- 30bF. Liu, J. Zhong, Y. Zhou, Z. Gao, P. J. Walsh, X. Wang, S. Ma, S. Hou, S. Liu, M. Wang, M. Wang, Q. Bian, Chem. Eur. J. 2018, 24, 2059–2064.
- 31M. M. Lorion, V. Koch, M. Nieger, H.-Y. Chen, A. Lei, S. Bräse, J. Cossy, Chem. Eur. J. 2020, 26, 13163–13169.
- 32W. Huang, X. Wan, Q. Shen, Org. Lett. 2020, 22, 4327–4332.
- 33W. Li, A. Varenikov, M. Gandelman, Eur. J. Org. Chem. 2020, 3138–3141.
- 34R. R. Merchant, J. T. Edwards, T. Qin, M. M. Kruszyk, C. Bi, G. Che, D.-H. Bao, W. Qiao, L. Sun, M. R. Collins, O. O. Fadeyi, G. M. Gallego, J. J. Mousseau, P. Nuhant, P. S. Baran, Science 2018, 360, 75–80.
- 35J.-C. Wu, L.-B. Gong, Y. Xia, R.-J. Song, Y.-X. Xie, J.-H. Li, Angew. Chem. Int. Ed. 2012, 51, 9909–9913; Angew. Chem. 2012, 124, 10047–10051.
- 36Z. T. Ariki, Y. Maekawa, M. Nambo, C. M. Crudden, J. Am. Chem. Soc. 2018, 140, 78–81.
- 37S. E. Denmark, A. J. Cresswell, J. Org. Chem. 2013, 78, 12593–12628.
- 38J. B. Diccianni, T. Diao, Trends Chem. 2019, 1, 830–844.
- 39J. M. E. Hughes, P. S. Fier, Org. Lett. 2019, 21, 5650–5654.
- 40M. Nambo, J. C. H. Yim, L. B. O. Freitas, Y. Tahara, Z. T. Ariki, Y. Maekawa, D. Yokogawa, C. M. Crudden, Nat. Commun. 2019, 10, 4528.
- 41
- 41aT. Patra, D. Maiti, Chem. Eur. J. 2017, 23, 7382–7401;
- 41bP. Xiao, X. Pannecoucke, J.-P. Bouillon, S. Couve-Bonnaire, Chem. Soc. Rev. 2021, 50, 6094–6151.
- 42
- 42aZ. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437–440;
- 42bA. Noble, S. J. McCarver, D. W. C. MacMillan, J. Am. Chem. Soc. 2015, 137, 624–627;
- 42cC. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan, Nature 2016, 536, 322–325.
- 43A. Fahandej-Sadi, R. J. Lundgren, Synlett 2017, 28, 2886–2890.
- 44
- 44aF. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082–1146;
- 44bC. C. C. Johansson, T. J. Colacot, Angew. Chem. Int. Ed. 2010, 49, 676–707; Angew. Chem. 2010, 122, 686–718;
- 44cM. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 1999, 121, 1473–1478;
- 44dJ. M. Fox, X. Huang, A. Chieffi, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 1360–1370.
- 45N. Shibata, T. Ishimaru, M. Nakamura, T. Toru, Synlett 2004, 2509–2512.
- 46
- 46aY. Takeuchi, T. Shiragami, K. Kimura, E. Suzuki, N. Shibata, Org. Lett. 1999, 1, 1571–1573;
- 46bY. Takeuchi, H. Fujisawa, T. Fujiwara, M. Matsuura, H. Komatsu, S. Ueno, T. Matsuzaki, Chem. Pharm. Bull. 2005, 53, 1062–1064;
- 46cD. Golparian, P. Fernandes, M. Ohnishi, J. S. Jensen, M. Unemo, Antimicrob. Agents Chemother. 2012, 56, 2739–2742;
- 46dY. Kobayashi, H. Wada, C. Rossios, D. Takagi, M. Higaki, S. I. Mikura, H. Goto, P. J. Barnes, K. Ito, J. Pharmacol. Exp. Ther. 2013, 345, 76–84.
- 47D. A. Culkin, J. F. Hartwig, Organometallics 2004, 23, 3398–3416.
- 48
- 48aC. Guo, R.-W. Wang, Y. Guo, F.-L. Qing, J. Fluorine Chem. 2012, 133, 86–96;
- 48bH. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119–2183.
- 49J. F. Hartwig, Organotransition metal chemistry: from bonding to catalysis, University Science Books, Sausalito, 2010.
- 50N. A. Beare, J. F. Hartwig, J. Org. Chem. 2002, 67, 541–555.
- 51
- 51aY. Guo, B. Twamley, J. M. Shreeve, Org. Biomol. Chem. 2009, 7, 1716–1722;
- 51bY. Guo, J. M. Shreeve, Chem. Commun. 2007, 3583–3585.
- 52Y. Guo, G.-H. Tao, A. Blumenfeld, J. M. Shreeve, Organometallics 2010, 29, 1818–1823.
- 53L. Wu, L. Falivene, E. Drinkel, S. Grant, A. Linden, L. Cavallo, R. Dorta, Angew. Chem. Int. Ed. 2012, 51, 2870–2873; Angew. Chem. 2012, 124, 2924–2927.
- 54Z. Jiao, J. J. Beiger, Y. Jin, S. Ge, J. S. Zhou, J. F. Hartwig, J. Am. Chem. Soc. 2016, 138, 15980–15986.
- 55X. Wang, W.-G. Liu, C.-H. Tung, L.-Z. Wu, H. Cong, Org. Lett. 2019, 21, 8158–8163.
- 56Y. Jin, M. Chen, S. Ge, J. F. Hartwig, Org. Lett. 2017, 19, 1390–1393.
- 57
- 57aB. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395–422;
- 57bB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2944.
- 58T. Kawasaki, T. Kitazume, Isr. J. Chem. 1999, 39, 129–131.
- 59Y. Komatsu, T. Sakamoto, T. Kitazume, J. Org. Chem. 1999, 64, 8369–8374.
- 60B. M. Trost, R. C. Bunt, J. Am. Chem. Soc. 1994, 116, 4089–4090.
- 61F. Zhang, Z. J. Song, D. Tschaen, R. P. Volante, Org. Lett. 2004, 6, 3775–3777.
- 62B. Jiang, Z.-G. Huang, K.-J. Cheng, Tetrahedron: Asymmetry 2006, 17, 942–951.
- 63N. Gao, X.-M. Zhao, C.-S. Cai, J.-W. Cai, Org. Biomol. Chem. 2015, 13, 9551–9558.
- 64
- 64aX. Pigeon, M. Bergeron, F. Barabé, P. Dubé, H. N. Frost, J.-F. Paquin, Angew. Chem. Int. Ed. 2010, 49, 1123–1127; Angew. Chem. 2010, 122, 1141–1145;
- 64bJ.-D. Hamel, M. Cloutier, J.-F. Paquin, Org. Lett. 2016, 18, 1852–1855;
- 64cJ.-D. Hamel, M. Drouin, J.-F. Paquin, J. Fluorine Chem. 2015, 174, 81–87.
- 65M. Drouin, S. Tremblay, J.-F. Paquin, Org. Biomol. Chem. 2017, 15, 2376–2384.
- 66H. Tsuji, K. Hashimoto, M. Kawatsura, Org. Lett. 2019, 21, 8837–8841.
- 67M. Kawatsura, D. Ikeda, Y. Komatsu, K. Mitani, T. Tanaka, J. Uenishi, Tetrahedron 2007, 63, 8815–8824.
- 68T. Song, X. Zhao, J. Hu, W. Dan, Eur. J. Org. Chem. 2018, 1141–1144.
- 69F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381–1407.
- 70K. Balaraman, C. Wolf, Angew. Chem. Int. Ed. 2017, 56, 1390–1395; Angew. Chem. 2017, 129, 1411–1416.
- 71Y. Zhu, Y. Mao, H. Mei, Y. Pan, J. Han, V. A. Soloshonok, T. Hayashi, Chem. Eur. J. 2018, 24, 8994–8998.
- 72X. Wang, F. Meng, Y. Wang, Z. Han, Y.-J. Chen, L. Liu, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2012, 51, 9276–9282; Angew. Chem. 2012, 124, 9410–9416.
- 73W.-B. Liu, C. M. Reeves, B. M. Stoltz, J. Am. Chem. Soc. 2013, 135, 17298–17301.
- 74W.-B. Liu, C. Zheng, C.-X. Zhuo, L.-X. Dai, S.-L. You, J. Am. Chem. Soc. 2012, 134, 4812–4821.
- 75H. Zhang, J. Chen, X.-M. Zhao, Org. Biomol. Chem. 2016, 14, 7183–7186.
- 76Z.-T. He, X. Jiang, J. F. Hartwig, J. Am. Chem. Soc. 2019, 141, 13066–13073.
- 77X.-J. Liu, S. Jin, W.-Y. Zhang, Q.-Q. Liu, C. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2020, 59, 2039–2043; Angew. Chem. 2020, 132, 2055–2059.
- 78
- 78aD. C. Behenna, B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044–15045;
- 78bB. M. Trost, J. Xu, J. Am. Chem. Soc. 2005, 127, 2846–2847;
- 78cJ. T. Mohr, D. C. Behenna, A. M. Harned, B. M. Stoltz, Angew. Chem. Int. Ed. 2005, 44, 6924–6927; Angew. Chem. 2005, 117, 7084–7087.
- 79
- 79aJ. Tsuji, I. Minami, Acc. Chem. Res. 1987, 20, 140–145;
- 79bJ. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 1793–1796.
- 80M. Nakamura, A. Hajra, K. Endo, E. Nakamura, Angew. Chem. Int. Ed. 2005, 44, 7248–7251; Angew. Chem. 2005, 117, 7414–7417.
- 81E. C. Burger, B. R. Barron, J. A. Tunge, Synlett 2006, 2824–2826.
- 82É. Bélanger, K. Cantin, O. Messe, M. Tremblay, J.-F. Paquin, J. Am. Chem. Soc. 2007, 129, 1034–1035.
- 83
- 83aÉ. Bélanger, M.-F. Pouliot, J.-F. Paquin, Org. Lett. 2009, 11, 2201–2204;
- 83bÉ. Bélanger, M.-F. Pouliot, M.-A. Courtemanche, J.-F. Paquin, J. Org. Chem. 2012, 77, 317–331.
- 84É. Bélanger, C. Houzé, N. Guimond, K. Cantin, J.-F. Paquin, Chem. Commun. 2008, 3251–3253.
- 85D. C. Behenna, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, Nat. Chem. 2012, 4, 130–133.
- 86Y. Lu, E. L. Goldstein, B. M. Stoltz, Org. Lett. 2018, 20, 5657–5660.
- 87W. Wang, H. Shen, X.-L. Wan, Q.-Y. Chen, Y. Guo, J. Org. Chem. 2014, 79, 6347–6353.
- 88G.-q. Shi, X.-h. Huang, F.-J. Zhang, Tetrahedron Lett. 1995, 36, 6305–6308.
- 89
- 89aM. Drouin, J.-D. Hamel, J.-F. Paquin, Synlett 2016, 27, 821–830;
- 89bQ.-Q. Min, Z. Yin, Z. Feng, W.-H. Guo, X. Zhang, J. Am. Chem. Soc. 2014, 136, 1230–1233.
- 90T. Konno, A. Ikemoto, T. Ishihara, Org. Biomol. Chem. 2012, 10, 8154–8163.
- 91
- 91aQ. Cheng, H.-F. Tu, C. Zheng, J.-P. Qu, G. Helmchen, S.-L. You, Chem. Rev. 2019, 119, 1855–1969;
- 91bS. L. Rössler, D. A. Petrone, E. M. Carreira, Acc. Chem. Res. 2019, 52, 2657–2672;
- 91cJ. F. Hartwig, L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461–1475.
- 92T. W. Butcher, J. F. Hartwig, Angew. Chem. Int. Ed. 2018, 57, 13125–13129; Angew. Chem. 2018, 130, 13309–13313.
- 93
- 93aY. Li, X. Liu, D. Ma, B. Liu, H. Jiang, Adv. Synth. Catal. 2012, 354, 2683–2688;
- 93bT. J. O'Connor, F. D. Toste, ACS Catal. 2018, 8, 5947–5951.
- 94T. W. Butcher, J. L. Yang, J. F. Hartwig, Org. Lett. 2020, 22, 6805–6809.
- 95T. W. Butcher, J. L. Yang, W. M. Amberg, N. B. Watkins, N. D. Wilkinson, J. F. Hartwig, Nature 2020, 583, 548–553.
- 96
- 96aD.-Q. Dong, H. Yang, J.-L. Shi, W.-J. Si, Z.-L. Wang, X.-M. Xu, Org. Chem. Front. 2020, 7, 2538–2575;
- 96bA. Lemos, C. Lemaire, A. Luxen, Adv. Synth. Catal. 2019, 361, 1500–1537;
- 96cZ. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 2018, 51, 2264–2278.
- 97Z.-Y. Wang, J.-H. Wan, G.-Y. Wang, R.-X. Jin, Q. Lan, X.-S. Wang, Chem. Asian J. 2018, 13, 261–265.
- 98W.-K. Tang, Z.-W. Xu, J. Xu, F. Tang, X.-X. Li, J.-J. Dai, H.-J. Xu, Y.-S. Feng, Org. Lett. 2019, 21, 196–200.
- 99G. N. Schrauzer, E. Deutsch, J. Am. Chem. Soc. 1969, 91, 3341–3350.
- 100M. Ke, Q. Feng, K. Yang, Q. Song, Org. Chem. Front. 2016, 3, 150–155.
- 101J. Ren, X. Fu, Y. Hou, J. Wu, F. Wu, Tetrahedron Lett. 2021, 66, 152805.
- 102J. C. Lo, J. Gui, Y. Yabe, C.-M. Pan, P. S. Baran, Nature 2014, 516, 343–348.
- 103E. P. A. Talbot, Synlett 2019, 30, 821–826.
- 104S. A. Green, S. Vásquez-Céspedes, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 11317–11324.
- 105
- 105aT. B. Patrick, T. Y. Agboka, K. Gorrell, J. Fluorine Chem. 2008, 129, 983–985;
- 105bK. Rousée, J.-P. Bouillon, S. Couve-Bonnaire, X. Pannecoucke, Org. Lett. 2016, 18, 540–543;
- 105cK. Hirotaki, T. Hanamoto, J. Org. Chem. 2011, 76, 8564–8568;
- 105dR. T. Thornbury, F. D. Toste, Angew. Chem. Int. Ed. 2016, 55, 11629–11632; Angew. Chem. 2016, 128, 11801–11804;
- 105eJ. Yang, H.-W. Zhao, J. He, C.-P. Zhang, Catalysts 2018, 8, 23.
- 106J. Liu, Q. Yuan, F. D. Toste, M. S. Sigman, Nat. Chem. 2019, 11, 710–715.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.