Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis
Dr. Siyao Wang
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240 China
Search for more papers by this authorDr. QingQing Zhou
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240 China
Search for more papers by this authorDr. Xiaheng Zhang
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024 China
Search for more papers by this authorCorresponding Author
Prof. Ping Wang
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240 China
Search for more papers by this authorDr. Siyao Wang
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240 China
Search for more papers by this authorDr. QingQing Zhou
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240 China
Search for more papers by this authorDr. Xiaheng Zhang
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024 China
Search for more papers by this authorCorresponding Author
Prof. Ping Wang
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240 China
Search for more papers by this authorAbstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202111388-sup-0001-misc_information.pdf13.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Henninot, J. C. Collins, J. M. Nuss, J. Med. Chem. 2018, 61, 1382–1414;
- 1bF. Albericio, H. G. Kruger, Future Med. Chem. 2012, 4, 1527–1531.
- 2For selected review and examples for peptide modification, see:
- 2aA. Taniguchi, Y. Shimizu, K. Oisaki, Y. Sohma, M. Kanai, Nat. Chem. 2016, 8, 974–982;
- 2bC. R. Shugrue, S. J. Miller, Chem. Rev. 2017, 117, 11894–11951;
- 2cL. R. Malins, J. N. deGruyter, K. J. Robbins, P. M. Scola, M. D. Eastgate, M. R. Ghadiri, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 5233–5241;
- 2dG. He, B. Wang, W. A. Nack, G. Chen, Acc. Chem. Res. 2016, 49, 635–645;
- 2eX. Zhang, G. Lu, M. Sun, M. Mahankali, Y. Ma, M. Zhang, W. Hua, Y. Hu, Q. Wang, J. Chen, G. He, X. Qi, W. Shen, P. Liu, G. Chen, Nat. Chem. 2018, 10, 540–548;
- 2fA. A. Berger, J. Leppkes, B. Koksch, ACS Cent. Sci. 2021, 7, 400–402;
- 2gS. Huhmann, B. Koksch, Eur. J. Org. Chem. 2018, 3667–3679;
- 2hM. Salwiczek, E. K. Nyakatura, U. I. M. Gerling, S. Ye, B. Koksch, Chem. Soc. Rev. 2012, 41, 2135–2171.
- 3For selected review and examples, see:
- 3aE. A. Hoyt, P. M. S. D. Cal, B. L. Oliveira, G. J. L. Bernardes, Nat. Rev. Chem. 2019, 3, 147–171;
- 3bO. Boutureira, G. J. L. Bernardes, Chem. Rev. 2015, 115, 2174–2195;
- 3cJ. N. deGruyter, L. R. Malins, P. S. Baran, Biochemistry 2017, 56, 3863–3873;
- 3dT. J. Wadzinski, A. Steinauer, L. Hie, G. Pelletier, A. Schepartz, S. J. Miller, Nat. Chem. 2018, 10, 644–652;
- 3eC. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 4740;
- 3fS. Bondalapati, M. Jbara, A. Brik, Nat. Chem. 2016, 8, 407–418;
- 3gC. Zhang, E. V. Vinogradova, A. M. Spokoyny, S. L. Buchwald, B. L. Pentelute, Angew. Chem. Int. Ed. 2019, 58, 4810–4839; Angew. Chem. 2019, 131, 4860–4892;
- 3hM. J. Matos, B. L. Oliveira, N. Martínez-Sáez, A. Guerreiro, P. M. S. D. Cal, J. Bertoldo, M. Maneiro, E. Perkins, J. Howard, M. J. Deery, J. M. Chalker, F. Corzana, G. Jiménez-Osés, G. J. L. Bernardes, J. Am. Chem. Soc. 2018, 140, 4004–4017;
- 3iH. H. Dhanjee, A. Saebi, I. Buslov, A. R. Loftis, S. L. Buchwald, B. L. Pentelute, J. Am. Chem. Soc. 2020, 142, 9124–9129.
- 4
- 4aR. C. McAtee, E. J. McClain, C. R. J. Stephenson, Trends Chem. 2019, 1, 111–125;
- 4bG. E. M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem. Soc. 2020, 142, 5461–5476;
- 4cY. Sumida, H. Ohmiya, Chem. Soc. Rev. 2021, 50, 6320–6332;
- 4dT. A. King, J. Mandrup Kandemir, S. J. Walsh, D. R. Spring, Chem. Soc. Rev. 2021, 50, 39–57.
- 5
- 5aY. Weng, C. Song, C.-W. Chiang, A. Lei, Commun. Chem. 2020, 3, 171;
- 5bH. Yin, M. Zheng, H. Chen, S. Wang, Q. Zhou, Q. Zhang, P. Wang, J. Am. Chem. Soc. 2020, 142, 14201–14209;
- 5cI. Kim, G. Kang, K. Lee, B. Park, D. Kang, H. Jung, Y.-T. He, M.-H. Baik, S. Hong, J. Am. Chem. Soc. 2019, 141, 9239–9248;
- 5dG. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268–271;
- 5eY. Kuang, K. Wang, X. Shi, X. Huang, E. Meggers, J. Wu, Angew. Chem. Int. Ed. 2019, 58, 16859–16863; Angew. Chem. 2019, 131, 17015–17019;
- 5fN. Y. Shin, J. M. Ryss, X. Zhang, S. J. Miller, R. R. Knowles, Science 2019, 366, 364–369;
- 5gD. Reich, A. Trowbridge, M. J. Gaunt, Angew. Chem. Int. Ed. 2020, 59, 2256–2261; Angew. Chem. 2020, 132, 2276–2281;
- 5hN. Ma, L. Guo, D. Qi, F. Gao, C. Yang, W. Xia, Org. Lett. 2021, 23, 6278–6282.
- 6
- 6aC. Bottecchia, T. Noël, Chem. Eur. J. 2019, 25, 26–42;
- 6bA. F. M. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775–8806;
- 6cW. Wang, M. M. Lorion, J. Shah, A. R. Kapdi, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 14700–14717; Angew. Chem. 2018, 130, 14912–14930.
- 7For selected review for amino acids modification via photoredox catalysis, see:
- 7aJ.-Q. Liu, A. Shatskiy, B. S. Matsuura, M. D. Kärkäs, Synthesis 2019, 51, 2759–2791;
- 7bF. J. Aguilar Troyano, K. Merkens, K. Anwar, A. Gómez-Suárez, Angew. Chem. Int. Ed. 2021, 60, 1098–1115; Angew. Chem. 2021, 133, 1112–1130.
- 8
- 8aÁ. Gutiérrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander, J. Am. Chem. Soc. 2017, 139, 12251–12258;
- 8bH. A. Beard, J. R. Hauser, M. Walko, R. M. George, A. J. Wilson, R. S. Bon, Commun. Chem. 2019, 2, 133;
- 8cY. Wang, L.-F. Deng, X. Zhang, Z.-D. Mou, D. Niu, Angew. Chem. Int. Ed. 2021, 60, 2155–2159; Angew. Chem. 2021, 133, 2183–2187;
- 8dL.-Q. Wan, X. Zhang, Y. Zou, R. Shi, J.-G. Cao, S.-Y. Xu, L.-F. Deng, L. Zhou, Y. Gong, X. Shu, G. Y. Lee, H. Ren, L. Dai, S. Qi, K. N. Houk, D. Niu, J. Am. Chem. Soc. 2021, 143, 11919–11926.
- 9C. Wang, R. Qi, H. Xue, Y. Shen, M. Chang, Y. Chen, R. Wang, Z. Xu, Angew. Chem. Int. Ed. 2020, 59, 7461–7466; Angew. Chem. 2020, 132, 7531–7536.
- 10
- 10aB. Josephson, C. Fehl, P. G. Isenegger, S. Nadal, T. H. Wright, A. W. J. Poh, B. J. Bower, A. M. Giltrap, L. Chen, C. Batchelor-McAuley, G. Roper, O. Arisa, J. B. I. Sap, A. Kawamura, A. J. Baldwin, S. Mohammed, R. G. Compton, V. Gouverneur, B. G. Davis, Nature 2020, 585, 530–537;
- 10bJ. Sim, M. W. Campbell, G. A. Molander, ACS Catal. 2019, 9, 1558–1563;
- 10cJ. R. Immel, M. Chilamari, S. Bloom, Chem. Sci. 2021, 12, 10083–10091;
- 10dL. Liu, Z. Deng, K. Xu, P. Jiang, H. Du, J. Tan, Org. Lett. 2021, 23, 5299–5304;
- 10eO. Zhang, J. W. Schubert, J. Org. Chem. 2020, 85, 6225–6232;
- 10fR. A. Aycock, C. J. Pratt, N. T. Jui, ACS Catal. 2018, 8, 9115–9119.
- 11
- 11aS. J. Tower, W. J. Hetcher, T. E. Myers, N. J. Kuehl, M. T. Taylor, J. Am. Chem. Soc. 2020, 142, 9112–9118;
- 11bY. Yu, L.-K. Zhang, A. V. Buevich, G. Li, H. Tang, P. Vachal, S. L. Colletti, Z.-C. Shi, J. Am. Chem. Soc. 2018, 140, 6797–6800;
- 11cB. Ding, Y. Weng, Y. Liu, C. Song, L. Yin, J. Yuan, Y. Ren, A. Lei, C.-W. Chiang, Eur. J. Org. Chem. 2019, 7596–7605;
- 11dM. Imiołek, P. G. Isenegger, W.-L. Ng, A. Khan, V. Gouverneur, B. G. Davis, ACS Cent. Sci. 2021, 7, 145–155.
- 12
- 12aB. X. Li, D. K. Kim, S. Bloom, R. Y. C. Huang, J. X. Qiao, W. R. Ewing, D. G. Oblinsky, G. D. Scholes, D. W. C. MacMillan, Nat. Chem. 2021, 13, 902–908;
- 12bD. A. Fancy, T. Kodadek, Proc. Natl. Acad. Sci. USA 1999, 96, 6020–6024;
- 12cS. Sato, H. Nakamura, Angew. Chem. Int. Ed. 2013, 52, 8681–8684; Angew. Chem. 2013, 125, 8843–8846.
- 13
- 13aJ. Kim, B. X. Li, R. Y. C. Huang, J. X. Qiao, W. R. Ewing, D. W. C. MacMillan, J. Am. Chem. Soc. 2020, 142, 21260–21266;
- 13bM. T. Taylor, J. E. Nelson, M. G. Suero, M. J. Gaunt, Nature 2018, 562, 563–568.
- 14
- 14aX. Chen, F. Ye, X. Luo, X. Liu, J. Zhao, S. Wang, Q. Zhou, G. Chen, P. Wang, J. Am. Chem. Soc. 2019, 141, 18230–18237;
- 14bK. Nakane, S. Sato, T. Niwa, M. Tsushima, S. Tomoshige, H. Taguchi, M. Ishikawa, H. Nakamura, J. Am. Chem. Soc. 2021, 143, 7726–7731;
- 14cA. F. M. Noisier, M. J. Johansson, L. Knerr, M. A. Hayes, W. J. Drury III, E. Valeur, L. R. Malins, R. Gopalakrishnan, Angew. Chem. Int. Ed. 2019, 58, 19096–19102; Angew. Chem. 2019, 131, 19272–19278.
- 15
- 15aS. Bloom, C. Liu, D. K. Kölmel, J. X. Qiao, Y. Zhang, M. A. Poss, W. R. Ewing, D. W. C. MacMillan, Nat. Chem. 2018, 10, 205–211;
- 15bM. Garreau, F. Le Vaillant, J. Waser, Angew. Chem. Int. Ed. 2019, 58, 8182–8186; Angew. Chem. 2019, 131, 8266–8270;
- 15cQ.-Q. Zhou, W. Guo, W. Ding, X. Wu, X. Chen, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 11196–11199; Angew. Chem. 2015, 127, 11348–11351;
- 15dL. Raynal, N. C. Rose, J. R. Donald, C. D. Spicer, Chem. Eur. J. 2021, 27, 69–88.
- 16R. Qi, C. Wang, Y. Huo, H. Chai, H. Wang, Z. Ma, L. Liu, R. Wang, Z. Xu, J. Am. Chem. Soc. 2021, 143, 12777–12783.
- 17C. Bottecchia, M. Rubens, S. B. Gunnoo, V. Hessel, A. Madder, T. Noël, Angew. Chem. Int. Ed. 2017, 56, 12702–12707; Angew. Chem. 2017, 129, 12876–12881.
- 18E. Jacob, R. Unger, Bioinformatics 2007, 23, e225–e230.
- 19C. B. Rosen, M. B. Francis, Nat. Chem. Biol. 2017, 13, 697–705.
- 20N. Stephanopoulos, M. B. Francis, Nat. Chem. Biol. 2011, 7, 876–884.
- 21
- 21aD. Chen, M. M. Disotuar, X. Xiong, Y. Wang, D. H.-C. Chou, Chem. Sci. 2017, 8, 2717–2722;
- 21bA. O.-Y. Chan, C.-M. Ho, H.-C. Chong, Y.-C. Leung, J.-S. Huang, M.-K. Wong, C.-M. Che, J. Am. Chem. Soc. 2012, 134, 2589–2598;
- 21cW.-K. Chan, C.-M. Ho, M.-K. Wong, C.-M. Che, J. Am. Chem. Soc. 2006, 128, 14796–14797;
- 21dP. Agarwal, J. van der Weijden, E. M. Sletten, D. Rabuka, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA 2013, 110, 46–51;
- 21eJ. MacDonald, H. Munch, T. Moore, M. B. Francis, Nat. Chem. Biol. 2015, 11, 326–331.
- 22
- 22aJ. M. Gilmore, R. A. Scheck, A. P. Esser-Kahn, N. S. Joshi, M. B. Francis, Angew. Chem. Int. Ed. 2006, 45, 5307–5311; Angew. Chem. 2006, 118, 5433–5437;
- 22bL. Purushottam, S. R. Adusumalli, U. Singh, V. B. Unnikrishnan, D. G. Rawale, M. Gujrati, R. K. Mishra, V. Rai, Nat. Commun. 2019, 10, 2539.
- 23
- 23aP. Dawson, T. Muir, I. Clark-Lewis, S. Kent, Science 1994, 266, 776–779;
- 23bS. Wang, Y. A. Thopate, Q. Zhou, P. Wang, Chin. J. Chem. 2019, 37, 1181–1193;
- 23cH. Liu, X. Li, Acc. Chem. Res. 2018, 51, 1643–1655.
- 24M. W. Popp, J. M. Antos, G. M. Grotenbreg, E. Spooner, H. L. Ploegh, Nat. Chem. Biol. 2007, 3, 707–708.
- 25
- 25aA. Bhunia, A. Studer, Chem 2021, 7, 2060–2100;
- 25bÁ. Gutiérrez-Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara, G. A. Molander, ACS Catal. 2016, 6, 8004–8008;
- 25cX. Shen, L. Qian, S. Yu, Sci. China Chem. 2020, 63, 687–691;
- 25dF. Gu, W. Huang, X. Liu, W. Chen, X. Cheng, Adv. Synth. Catal. 2018, 360, 925–931.
- 26N. Alandini, L. Buzzetti, G. Favi, T. Schulte, L. Candish, K. D. Collins, P. Melchiorre, Angew. Chem. Int. Ed. 2020, 59, 5248–5253; Angew. Chem. 2020, 132, 5286–5291.
- 27
- 27aM. Bambouskova, L. Gorvel, V. Lampropoulou, A. Sergushichev, E. Loginicheva, K. Johnson, D. Korenfeld, M. E. Mathyer, H. Kim, L.-H. Huang, D. Duncan, H. Bregman, A. Keskin, A. Santeford, R. S. Apte, R. Sehgal, B. Johnson, G. K. Amarasinghe, M. P. Soares, T. Satoh, S. Akira, T. Hai, C. de Guzman Strong, K. Auclair, T. P. Roddy, S. A. Biller, M. Jovanovic, E. Klechevsky, K. M. Stewart, G. J. Randolph, M. N. Artyomov, Nature 2018, 556, 501–504;
- 27bE. L. Mills, D. G. Ryan, H. A. Prag, D. Dikovskaya, D. Menon, Z. Zaslona, M. P. Jedrychowski, A. S. H. Costa, M. Higgins, E. Hams, J. Szpyt, M. C. Runtsch, M. S. King, J. F. McGouran, R. Fischer, B. M. Kessler, A. F. McGettrick, M. M. Hughes, R. G. Carroll, L. M. Booty, E. V. Knatko, P. J. Meakin, M. L. J. Ashford, L. K. Modis, G. Brunori, D. C. Sévin, P. G. Fallon, S. T. Caldwell, E. R. S. Kunji, E. T. Chouchani, C. Frezza, A. T. Dinkova-Kostova, R. C. Hartley, M. P. Murphy, L. A. O'Neill, Nature 2018, 556, 113–117.
- 28
- 28aY. Zhang, W. Qin, D. Liu, Y. Liu, C. Wang, Chem. Sci. 2021, 12, 6059–6063;
- 28bW. Qin, K. Qin, Y. Zhang, W. Jia, Y. Chen, B. Cheng, L. Peng, N. Chen, Y. Liu, W. Zhou, Y.-L. Wang, X. Chen, C. Wang, Nat. Chem. Biol. 2019, 15, 983–991.
- 29S. Li, C. Schöneich, R. T. Borchardt, Biotechnol. Bioeng. 1995, 48, 490–500.
- 30For selected examples with DHP precursor, see:
- 30aE. de Pedro Beato, D. Mazzarella, M. Balletti, P. Melchiorre, Chem. Sci. 2020, 11, 6312–6324;
- 30bT. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546–576;
- 30cY. Qin, L. Zhu, S. Luo, Chem. Rev. 2017, 117, 9433–9520;
- 30dL. Guillemard, N. Kaplaneris, L. Ackermann, M. J. Johansson, Nat. Rev. Chem. 2021, 5, 522–545;
- 30eL. Xia, W. Fan, X.-A. Yuan, S. Yu, ACS Catal. 2021, 11, 9397–9406;
- 30fH. Huang, G. Zhang, Y. Chen, Angew. Chem. Int. Ed. 2015, 54, 7872–7876; Angew. Chem. 2015, 127, 7983–7987.
- 31
- 31aS. Wang, Q. Zhou, X. Chen, R.-H. Luo, Y. Li, X. Liu, L.-M. Yang, Y.-T. Zheng, P. Wang, Nat. Commun. 2021, 12, 2257;
- 31bG. Y. Dubur, Y. R. Uldrikis, Chem. Heterocycl. Compd. (N.Y.) 1972, 5, 762–763.
10.1007/BF00475850 Google Scholar
- 32
- 32aR. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149–2154;
- 32bD. A. Wellings, E. Atherton, Methods Enzymol. 1997, 289, 44–67.
- 33
- 33aG. Kim, S. J. Weiss, R. L. Levine, Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 901–905;
- 33bS. W. Taylor, E. Fahy, J. Murray, R. A. Capaldi, S. S. Ghosh, J. Biol. Chem. 2003, 278, 19587–19590;
- 33cY. Seki, T. Ishiyama, D. Sasaki, J. Abe, Y. Sohma, K. Oisaki, M. Kanai, J. Am. Chem. Soc. 2016, 138, 10798–10801.
- 34Y. Xu, X. Wang, K. Song, J. Du, J. Liu, Y. Miao, Y. Li, RSC Adv. 2021, 11, 15323–15331.
- 35P. W. Schiller, C. F. Yam, M. Lis, Biochemistry 1977, 16, 1831–1838.
- 36I. O. Ivanikov, M. E. Brekhova, G. E. Samonina, N. F. Myasoedov, I. P. Ashmarin, Bull. Exp. Biol. Med. 2002, 134, 73–74.
- 37O. A. Marcos-Contreras, S. Martinez de Lizarrondo, I. Bardou, C. Orset, M. Pruvost, A. Anfray, Y. Frigout, Y. Hommet, L. Lebouvier, J. Montaner, D. Vivien, M. Gauberti, Blood 2016, 128, 2423–2434.
- 38I. Bab, M. Chorev, Biopolymers 2002, 66, 33–48.
- 39A. M. Lincoff, J. A. Bittl, R. A. Harrington, F. Feit, N. S. Kleiman, J. D. Jackman, I. J. Sarembock, D. J. Cohen, D. Spriggs, R. Ebrahimi, G. Keren, J. Carr, E. A. Cohen, A. Betriu, W. Desmet, D. J. Kereiakes, W. Rutsch, R. G. Wilcox, P. J. de Feyter, A. Vahanian, E. J. Topol, JAMA J. Am. Med. Assoc. 2003, 289, 853–863.
- 40C. D. Ancell, J. Phipps, L. Young, Am. J. Health-Syst. Pharm. 2001, 58, 879–885.
- 41J. Pfaus, F. Giuliano, H. Gelez, J. Sex. Med. 2007, 4, 269–279.
- 42X. Lin, G. Koelsch, S. Wu, D. Downs, A. Dashti, J. Tang, Proc. Natl. Acad. Sci. USA 2000, 97, 1456–1460.
- 43S. O. Ögren, E. Kuteeva, T. Hökfelt, J. Kehr, CNS Drugs 2006, 20, 633–654.
- 44C. Tortorella, G. Neri, G. G. Nussdorfer, Int. J. Mol. Med. 2007, 19, 639–647.
- 45C. Y. Koh, M. Kazimirova, A. Trimnell, P. Takac, M. Labuda, P. A. Nuttall, R. M. Kini, J. Biol. Chem. 2007, 282, 29101–29113.
- 46T. Ohtaki, Y. Shintani, S. Honda, H. Matsumoto, A. Hori, K. Kanehashi, Y. Terao, S. Kumano, Y. Takatsu, Y. Masuda, Y. Ishibashi, T. Watanabe, M. Asada, T. Yamada, M. Suenaga, C. Kitada, S. Usuki, T. Kurokawa, H. Onda, O. Nishimura, M. Fujino, Nature 2001, 411, 613–617.
- 47P. C. A. Kam, S. Williams, F. F. Y. Yoong, Anaesthesia 2004, 59, 993–1001.
- 48T. Kamitani, K. Kito, H. P. Nguyen, T. Fukuda-Kamitani, E. T. Yeh, J. Biol. Chem. 1998, 273, 11349–11353.
- 49
- 49aL. Cardinale, M. O. Konev, A. Jacobi von Wangelin, Chem. Eur. J. 2020, 26, 8239–8243;
- 49bI. Kim, S. Park, S. Hong, Org. Lett. 2020, 22, 8730–8734;
- 49cX. Jiang, M.-M. Zhang, W. Xiong, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2019, 58, 2402–2406; Angew. Chem. 2019, 131, 2424–2428.
- 50C. K. Prier, D. A. Rankic, D. W. MacMillan, Chem. Rev. 2013, 113, 5322–5363.
- 51
- 51aG. L. Lackner, K. W. Quasdorf, G. Pratsch, L. E. Overman, J. Org. Chem. 2015, 80, 6012–6024;
- 51bG. Pratsch, G. L. Lackner, L. E. Overman, J. Org. Chem. 2015, 80, 6025–6036.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.