A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo
Shuping Zhang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Hua Chen
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorLiping Wang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorXue Qin
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorProf. Bang-Ping Jiang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorProf. Shi-Chen Ji
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Xing-Can Shen
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorProf. Hong Liang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorShuping Zhang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Hua Chen
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorLiping Wang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorXue Qin
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorProf. Bang-Ping Jiang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorProf. Shi-Chen Ji
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Xing-Can Shen
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorProf. Hong Liang
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004 P.R. China
Search for more papers by this authorAbstract
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2, composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773/I733) and 2.4-fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202107076-sup-0001-misc_information.pdf3.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. R. Horsman, P. Vaupel, Front. Oncol. 2016, 6, 66.
- 2S. R. McKeown, Br. J. Radiol. 2014, 87, 20130676.
- 3F. W. Hunter, B. G. Wouters, W. R. Wilson, Br. J. Cancer 2016, 114, 1071–1077.
- 4Y. Ye, Q. Hu, H. Chen, K. Liang, Y. Yuan, Y. Xiang, H. Ruan, Z. Zhang, A. Song, H. Zhang, L. Liu, L. Diao, Y. Lou, B. Zhou, L. Wang, S. Zhou, J. Gao, E. Jonasch, S. H. Lin, Y. Xia, C. Lin, L. Yang, G. B. Mills, H. Liang, L. Han, Nat. Metab. 2019, 1, 431–444.
- 5J. Waller, B. Onderdonk, A. Flood, H. Swartz, J. Shah, A. Shah, B. Aydogan, H. Halpern, Y. Hasan, Br. J. Radiol. 2020, 93, 20190640.
- 6J. C. Carmona-Bozo, R. Manavaki, R. Woitek, T. Torheim, G. C. Baxter, C. Caracò, E. Provenzano, M. J. Graves, T. D. Fryer, A. J. Patterson, Eur. Radiol. 2021, 31, 333–344.
- 7K. Umezawa, Y. Masafumi, M. Kamiya, T. Yamasoba, Y. Urano, Nat. Chem. 2017, 9, 279–286.
- 8Y. Yang, T. Zhou, M. Jin, K. Zhou, D. Liu, X. Li, F. Huo, W. Li, C. Yin, J. Am. Chem. Soc. 2020, 142, 1614–1620.
- 9G. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1, 1–22.
- 10T.-B. Ren, W. Xu, Q.-L. Zhang, X.-X. Zhang, S.-Y. Wen, H.-B. Yi, L. Yuan, X.-B. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7473–7477; Angew. Chem. 2018, 130, 7595–7599.
- 11S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, W. Choi, Nat. Rev. Phys. 2020, 2, 141–158.
- 12M. Koch, P. Symvoulidis, V. Ntziachristos, Nat. Photonics 2018, 12, 505–515.
- 13Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, F. Li, J. Am. Chem. Soc. 2015, 137, 6407–6416.
- 14S. M. Usama, F. Inagaki, H. Kobayashi, M. J. Schnermann, J. Am. Chem. Soc. 2021, 143, 5674–5679.
- 15Y. Jiao, L. Zhang, X. Gao, W. Si, C. Duan, Angew. Chem. Int. Ed. 2020, 59, 6021–6027; Angew. Chem. 2020, 132, 6077–6083.
- 16Z. Thiel, P. Rivera-Fuentes, Angew. Chem. Int. Ed. 2019, 58, 11474–11478; Angew. Chem. 2019, 131, 11597–11602.
- 17B. Brennecke, Q. Wang, Q. Zhang, H.-Y. Hu, M. Nazaré, Angew. Chem. Int. Ed. 2020, 59, 8512–8516; Angew. Chem. 2020, 132, 8590–8594.
- 18H. Huang, K. Wang, S. Huang, H. Lin, C. Lin, Biosens. Bioelectron. 2011, 26, 3511–3516.
- 19J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133–1143.
- 20S. He, J. Li, Y. Lyu, J. Huang, K. Pu, J. Am. Chem. Soc. 2020, 142, 7075–7082.
- 21L. V. Wang, S. Hu, Science 2012, 335, 1458–1462.
- 22L. Nie, X. Chen, Chem. Soc. Rev. 2014, 43, 7132–7170.
- 23H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang, Nat. Biotechnol. 2006, 24, 848–851.
- 24J. Weber, P. C. Beard, S. E. Bohndiek, Nat. Methods 2016, 13, 639–651.
- 25V. Ntziachristos, Nat. Methods 2010, 7, 603–614.
- 26Y. Zhang, S. He, W. Chen, Y. Liu, X. Zhang, Q. Miao, K. Pu, Angew. Chem. Int. Ed. 2021, 60, 5921–5927; Angew. Chem. 2021, 133, 5986–5992.
- 27J. Huang, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 11717–11731; Angew. Chem. 2020, 132, 11813–11827.
- 28A. S. Jeevarathinam, J. E. Lemaster, F. Chen, E. Zhao, J. V. Jokerst, Angew. Chem. Int. Ed. 2020, 59, 4678–4683; Angew. Chem. 2020, 132, 4708–4713.
- 29Y. Mantri, B. Davidi, J. E. Lemaster, A. Hariri, J. V. Jokerst, Nanoscale 2020, 12, 10511–10520.
- 30P. Anees, J. Joseph, S. Sreejith, N. V. Menon, Y. Kang, S. W.-K. Yu, A. Ajayaghosh, Y. Zhao, Chem. Sci. 2016, 7, 4110–4116.
- 31H.-W. Liu, H. Zhang, X. Lou, L. Teng, J. Yuan, L. Yuan, X.-B. Zhang, W. Tan, Chem. Commun. 2020, 56, 8103–8106.
- 32A. Zlitni, G. Gowrishankar, I. Steinberg, T. Haywood, S. S. Gambhir, Nat. Commun. 2020, 11, 1250.
- 33M. Li, Z. Luo, Y. Zhao, Chem. Mater. 2018, 30, 25–53.
- 34S. Goel, C. A. Ferreira, F. Chen, P. A. Ellison, C. M. Siamof, T. E. Barnhart, W. Cai, Adv. Mater. 2018, 30, 1704367.
- 35Z. Dong, L. Feng, Y. Hao, M. Chen, M. Gao, Y. Chao, H. Zhao, W. Zhu, J. Liu, C. Liang, Q. Zhang, Z. Liu, J. Am. Chem. Soc. 2018, 140, 2165–2178.
- 36X. He, Z. Zhao, L.-H. Xiong, P. F. Gao, C. Peng, R. S. Li, Y. Xiong, Z. Li, H. H.-Y. Sung, I. D. Williams, R. T. K. Kwork, J. W. Y. Lam, C. Z. Huang, N. Ma, B. Z. Tang, J. Am. Chem. Soc. 2018, 140, 6904–6911.
- 37X. Ai, C. J. H. Ho, J. Aw, A. B. E. Attia, J. Mu, Y. Wang, X. Wang, Y. Wang, X. Liu, H. Chen, M. Gao, X. Chen, E. K. L. Yeow, G. Liu, M. Olivo, B. Xing, Nat. Commun. 2016, 7, 10432.
- 38W. Fan, B. Yung, P. Huang, X. Chen, Chem. Rev. 2017, 117, 13566–13638.
- 39D. Ni, C. A. Ferreira, T. E. Barnhart, V. Quach, B. Yu, D. Jiang, W. Wei, H. Liu, J. W. Engle, P. Hu, W. Cai, J. Am. Chem. Soc. 2018, 140, 14971–14979.
- 40X. Meng, J. Zhang, Z. Sun, L. Zhou, G. Deng, S. Li, W. Li, P. Gong, L. Cai, Theranostics 2018, 8, 6025–3034.
- 41J. Ouyang, L. Sun, Z. Zeng, C. Zeng, F. Zeng, S. Wu, Angew. Chem. Int. Ed. 2020, 59, 10111–10121; Angew. Chem. 2020, 132, 10197–10207.
- 42J. Zhang, X. Zhen, J. Zeng, K. Pu, Anal. Chem. 2018, 90, 9301–9307.
- 43X. Huang, J. Song, B. C. Yung, X. Huang, Y. Xiong, X. Chen, Chem. Soc. Rev. 2018, 47, 2873–2920.
- 44Z. Chen, X. Mu, Z. Han, S. Yang, C. Zhang, Z. Guo, Y. Bai, W. He, J. Am. Chem. Soc. 2019, 141, 17973–17977.
- 45J. Zhou, H. Ma, Chem. Sci. 2016, 7, 6309–6315.
- 46L. Teng, G. Song, Y. Liu, X. Han, Z. Li, Y. Wang, S. Huan, X.-B. Zhang, W. Tan, J. Am. Chem. Soc. 2019, 141, 13572–13581.
- 47L. Yin, H. Sun, H. Zhang, L. He, L. Qiu, J. Lin, H. Xia, Y. Zhang, S. Ji, H. Shi, M. Gao, J. Am. Chem. Soc. 2019, 141, 3265–3273.
- 48S. H. Gardner, C. J. Brady, C. Keeton, A. K. Yadav, S. C. Mallojjala, M. Y. Lucero, S. Su, Z. Yu, J. S. Hirschi, L. M. Mirica, J. Chan, Angew. Chem. Int. Ed. 2021, 60, 18860–18866; Angew. Chem. 2021, 133, 19008–19014.
- 49G. Feng, G.-Q. Zhang, D. Ding, Chem. Soc. Rev. 2020, 49, 8179–8234.
- 50Z. Li, X. Gao, W. Shi, X. Li, H. Ma, Chem. Commun. 2013, 49, 5859–5861.
- 51V.-N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, J. Am. Chem. Soc. 2019, 141, 16243–16248.
- 52J. Huang, Y. Jiang, J. Li, J. Huang, K. Pu, Angew. Chem. Int. Ed. 2021, 60, 3999–4003; Angew. Chem. 2021, 133, 4045–4049.
- 53E. Y. Zhou, H. J. Knox, C. Liu, W. Zhao, J. Chan, J. Am. Chem. Soc. 2019, 141, 17601–17609.
- 54S. Zhang, H. Chen, L. Wang, C. Liu, L. Liu, Y. Sun, X. Shen, J. Mater. Chem. B 2021, 9, 1089–1095.
- 55M. Zha, X. Lin, J.-S. Ni, Y. Li, Y. Zhang, X. Zhang, L. Wang, K. Li, Angew. Chem. Int. Ed. 2020, 59, 23268–23276; Angew. Chem. 2020, 132, 23468–23476.
- 56Y. Mantri, J. V. Jokerst, ACS Nano 2020, 14, 9408–9422.
- 57D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu, S. Long, J. Fang, K. Shao, W. Sun, X. Yan, X. Peng, Adv. Mater. 2020, 32, 1907855.
- 58X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K. Pu, Angew. Chem. Int. Ed. 2018, 57, 7804–7808; Angew. Chem. 2018, 130, 7930–7934.
- 59Y.-L. Qi, L. Guo, L.-L. Chen, H. Li, Y.-S. Yang, A.-Q. Jiang, H.-L. Zhu, Coord. Chem. Rev. 2020, 421, 213460.
- 60P. Vaupel, K. Schlenger, C. Knoop, M. Höckel, Cancer Res. 1991, 51, 3316–3322.
- 61W. R. Wilson, M. P. Hay, Nat. Rev. Cancer 2011, 11, 393–410.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.